Abstract
A new method has been developed to measure the equivalent pore radius in cellular membranes, and has been applied to human red cells. When red cells are suddenly introduced into a non-isosmolar concentration of non-lipid-soluble non-electrolyte molecules, water will enter or leave the cell. The rate of cell swelling or shrinking is determined and extrapolated to zero time to give the initial rate of volume change. By suitable adjustment of the concentration of the external solution the initial rate may be brought to zero. The transient equilibrium concentration, determined by interpolation from experimental data, gives a measure of Staverman's reflection coefficient, σ. The zero time method has enabled us to determine σ for nine permeant molecules. σ is directly related to the equivalent pore radius; the experimental data lead to a value of 4.2 Å for the equivalent pore radius in man, in good agreement with the previous figure of 3.5 Å given by Paganelli and Solomon. The zero time method offers a number of advantages over previous methods for determination of this parameter. It requires no measurement of the rate of water entrance into the cell, and is essentially independent of the kinetics of cell swelling. It may be applied to a variety of living cells so that many additional membranes may now be characterized in terms of their equivalent pore radius.
Full Text
The Full Text of this article is available as a PDF (860.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- DURBIN R. P., FRANK H., SOLOMON A. K. Water flow through frog gastric mucosa. J Gen Physiol. 1956 Mar 20;39(4):535–551. doi: 10.1085/jgp.39.4.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PAGANELLI C. V., SOLOMON A. K. The rate of exchange of tritiated water across the human red cell membrane. J Gen Physiol. 1957 Nov 20;41(2):259–277. doi: 10.1085/jgp.41.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SIDEL V. W., SOLOMON A. K. Entrance of water into human red cells under an osmotic pressure gradient. J Gen Physiol. 1957 Nov 20;41(2):243–257. doi: 10.1085/jgp.41.2.243. [DOI] [PMC free article] [PubMed] [Google Scholar]