Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1961 Jan 1;44(3):443–467. doi: 10.1085/jgp.44.3.443

Investigations of the Electrical Properties of Cardiac Muscle Fibres with the Aid of Intracellular Double-Barrelled Electrodes

Edward A Johnson 1, J Tille 1
PMCID: PMC2195111  PMID: 13790256

Abstract

Current has been passed through the cell membrane of muscle fibres of the isolated rabbit right ventricle with the aid of intracellular double-barrelled microelectrodes. Two types of muscle fibres were distinguished which are called P and V fibres. The relation between the intensity of a hyperpolarising current applied during the rising phase and the maximum amplitude of the action potential was different in these fibres. For P fibres the relation was essentially linear over most of the range of currents used. For V fibres the change in maximum action potential amplitude was either negligible or did not appear until a certain value of hyperpolarising current was reached. This behaviour of V fibres can be understood if a drop in polarisation resistance occurs during the rising phase and is of such short duration that the polarisation resistance has returned to its resting value before the crest of the action potential is reached. P fibres have an estimated mean resting polarisation resistance of (106 ± 13) K ohms, and a rheobase current strength of (0.08 ± 0.02) µa. In V fibres the resting polarisation resistance was (47 ± 29) K ohms and the rheobase current strength (0.47 ± 0.28) µa.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. COOMBS J. S., CURTIS D. R., ECCLES J. C. The electrical constants of the motoneurone membrane. J Physiol. 1959 Mar 12;145(3):505–528. doi: 10.1113/jphysiol.1959.sp006158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. COOMBS J. S., ECCLES J. C., FATT P. The electrical properties of the motoneurone membrane. J Physiol. 1955 Nov 28;130(2):291–325. doi: 10.1113/jphysiol.1955.sp005411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CORABOEUF E., ZACOUTO F., GARGOUIL Y. M., LAPLAUD J. Mesure de la résistance membranaire du myocarde ventriculaire de mammifères au cours de l'activité. C R Hebd Seances Acad Sci. 1958 May 19;246(20):2934–2937. [PubMed] [Google Scholar]
  4. FATT P., KATZ B. An analysis of the end-plate potential recorded with an intracellular electrode. J Physiol. 1951 Nov 28;115(3):320–370. doi: 10.1113/jphysiol.1951.sp004675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FRANK K., FUORTES M. G. Stimulation of spinal motoneurones with intracellular electrodes. J Physiol. 1956 Nov 28;134(2):451–470. doi: 10.1113/jphysiol.1956.sp005657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. JOHNSON E. A., ROBERTSON P. A., TILLE J. J. Purkinje and ventricular membrane resistances during the rising phase of the action potential. Nature. 1958 Oct 25;182(4643):1161–1162. doi: 10.1038/1821161a0. [DOI] [PubMed] [Google Scholar]
  8. WEIDMANN S. The electrical constants of Purkinje fibres. J Physiol. 1952 Nov;118(3):348–360. doi: 10.1113/jphysiol.1952.sp004799. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES