Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1961 Mar 1;44(4):679–687. doi: 10.1085/jgp.44.4.679

Electrical Potential Difference Measurements in Perfused Single Proximal Tubules of Necturus Kidney

Guillermo Whittembury 1, Erich E Windhager 1
PMCID: PMC2195121  PMID: 13784944

Abstract

Transtubular and peritubular face electrical potential differences (P.D.) of the proximal tubules of the kidney of the amphibian Necturus maculosus have been measured in situ. These measurements have been carried out both under normal conditions, when the tubular fluid originates in the glomerular filtrate, and under conditions when the composition of the tubular fluid has been altered using the stopped flow microperfusion technique. Under normal conditions the transtubular potential difference is 20 mv. (lumen-negative) and the P.D. across the peritubular face is 74 mv. (cell-negative). The P.D. across the luminal face is thus 54 mv. (cell-negative). This electrical asymmetry is not influenced by replacing the normal tubular fluid by NaCl, NaCl + mannitol, or by alteration in the intraluminal pH from 7 to 4. On the other hand, replacement of Na by K or choline and the addition of small amounts of DNP to the perfusate diminish this asymmetry.

Full Text

The Full Text of this article is available as a PDF (562.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. GIEBISCH G. Measurements of pH, chloride and insulin concentrations in proximal tubule fluid of necturus. Am J Physiol. 1956 Apr;185(1):171–174. doi: 10.1152/ajplegacy.1956.185.1.171. [DOI] [PubMed] [Google Scholar]
  2. GRUNDFEST H., KAO C. Y., ALTAMIRANO M. Bioelectric effects of ions microinjected into the giant axon of Loligo. J Gen Physiol. 1954 Nov 20;38(2):245–282. doi: 10.1085/jgp.38.2.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. HODGKIN A. L., KATZ B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949 Mar 1;108(1):37–77. doi: 10.1113/jphysiol.1949.sp004310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. KOEFOED-JOHNSEN V., USSING H. H. The nature of the frog skin potential. Acta Physiol Scand. 1958 Jun 2;42(3-4):298–308. doi: 10.1111/j.1748-1716.1958.tb01563.x. [DOI] [PubMed] [Google Scholar]
  5. LING G., GERARD R. W. The normal membrane potential of frog sartorius fibers. J Cell Physiol. 1949 Dec;34(3):383–396. doi: 10.1002/jcp.1030340304. [DOI] [PubMed] [Google Scholar]
  6. MAIZELS M., REMINGTON M. Mercaptomerin and water exchange in cortex slices of rat kidney. J Physiol. 1958 Sep 23;143(2):275–282. doi: 10.1113/jphysiol.1958.sp006058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. SCHATZMANN H. J., WINDHAGER E. E., SOLOMON A. K. Single proximal tubules of the Necturus kidney. II. Effect of 2, 4-dinitro-phenol and ouabain on water reabsorption. Am J Physiol. 1958 Dec;195(3):570–574. doi: 10.1152/ajplegacy.1958.195.3.570. [DOI] [PubMed] [Google Scholar]
  8. SHIPP J. C., HANENSON I. B., WINDHAGER E. E., SCHATZMANN H. J., WHITTEMBURY G., YOSHIMURA H., SOLOMON A. K. Single proximal tubules of the Necturus kidney; methods for micropuncture and microperfusion. Am J Physiol. 1958 Dec;195(3):563–569. doi: 10.1152/ajplegacy.1958.195.3.563. [DOI] [PubMed] [Google Scholar]
  9. WHITTEMBURY G., SUGINO N., SOLOMON A. K. Ionic permeability and electrical potential differences in Necturus kidney cells. J Gen Physiol. 1961 Mar;44:689–712. doi: 10.1085/jgp.44.4.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. WINDHAGER E. E., WHITTEMBURY G., OKEN D. E., SCHATZMANN H. J., SOLOMON A. K. Single proximal tubules of the Necturus kidney. III. Dependence of H2O movement on NaCl concentration. Am J Physiol. 1959 Aug;197:313–318. doi: 10.1152/ajplegacy.1959.197.2.313. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES