Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1961 Mar 1;44(4):659–678. doi: 10.1085/jgp.44.4.659

Measurements of Electrical Potential Differences on Single Nephrons of the Perfused Necturus Kidney

Gerhard Giebisch 1
PMCID: PMC2195124  PMID: 13705146

Abstract

Stable electrical potential differences can be measured by means of conventional glass microelectrodes across the cell membrane of renal tubule cells and across the epithelial wall of single tubules in the doubly perfused kidney of Necturus. These measurements have been carried out with amphibian Ringer's solution, and with solutions of altered ionic composition. The proximal tubule cell has been found to be electrically asymmetrical inasmuch as a smaller potential difference is maintained across the luminal cell membrane than across the peritubular cell boundary. The tubule lumen is always electrically negative with respect to the peritubular extracellular medium. Observations on the effectiveness of potassium ions in depolarizing single tubule cells indicate that the transmembrane potential is essentially an inverse function of the logarithm of the external potassium concentration. The behavior of the peritubular transmembrane potential resembles more closely an ideal potassium electrode than that of the luminal transmembrane potential. From these results, and the effects of various ionic substitutions on the electrical profile of the renal tubular epithelium, a thesis concerning the origin of the observed potential differences is presented. A sodium extrusion mechanism is considered to be located at the peritubular cell boundary, and reasons are given for the hypothesis that the electrical asymmetry across the proximal renal tubule cell could arise as a consequence of differences in the relative sodium and potassium permeability at the luminal and peritubular cell boundaries.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADRIAN R. H. The effect of internal and external potassium concentration on the membrane potential of frog muscle. J Physiol. 1956 Sep 27;133(3):631–658. doi: 10.1113/jphysiol.1956.sp005615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BOTT P. A. Renal excretion of creatinine in Necturus; a reinvestigation by direct analysis of glomerular and tubule fluid for creatinine and inulin. Am J Physiol. 1952 Jan;168(1):107–113. doi: 10.1152/ajplegacy.1951.168.1.107. [DOI] [PubMed] [Google Scholar]
  3. BOTT P. A. The concentration of potassium in glomerular urine of necturi. J Biol Chem. 1955 Jul;215(1):287–293. [PubMed] [Google Scholar]
  4. CORT J. H., KLEINZELLER A. The effect of temperature on the transport of sodium and potassium by kidney cortex slices. J Physiol. 1958 Jul 14;142(2):208–218. doi: 10.1113/jphysiol.1958.sp006010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. COTLOVE E., TRANTHAM H. V., BOWMAN R. L. An instrument and method for automatic, rapid, accurate, and sensitive titration of chloride in biologic samples. J Lab Clin Med. 1958 Mar;51(3):461–468. [PubMed] [Google Scholar]
  6. Cullis W. C. On secretion in the frog's kidney. J Physiol. 1906 May 31;34(3):250–266. doi: 10.1113/jphysiol.1906.sp001154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DAVIS H. Biophysics and physiology of the inner ear. Physiol Rev. 1957 Jan;37(1):1–49. doi: 10.1152/physrev.1957.37.1.1. [DOI] [PubMed] [Google Scholar]
  8. GIEBISCH G., DORMAN P. J. Comparative study of uptake and distribution of Hg203 given as labelled chlormerodrin (neohydrin). Proc Soc Exp Biol Med. 1958 May;98(1):50–52. doi: 10.3181/00379727-98-23937. [DOI] [PubMed] [Google Scholar]
  9. GIEBISCH G., KRAUPP O., PILLAT B., STORMANN H. Der Ersatz von extracellulärem Natriumchlorid durch Natriumsulfat bzw. Saccharose und seine Wirkung auf die isoliert durchströmte Saugetiermuskulatur. Pflugers Arch. 1957;265(3):220–236. doi: 10.1007/BF00595649. [DOI] [PubMed] [Google Scholar]
  10. GIEBISCH G. Measurements of electrical potentials and ion fluxes on single renal tubules. Circulation. 1960 May;21:879–891. doi: 10.1161/01.cir.21.5.879. [DOI] [PubMed] [Google Scholar]
  11. GIEBISCH G. Measurements of pH, chloride and insulin concentrations in proximal tubule fluid of necturus. Am J Physiol. 1956 Apr;185(1):171–174. doi: 10.1152/ajplegacy.1956.185.1.171. [DOI] [PubMed] [Google Scholar]
  12. GLYNN I. M. Sodium and potassium movements in human red cells. J Physiol. 1956 Nov 28;134(2):278–310. doi: 10.1113/jphysiol.1956.sp005643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. GLYNN I. M. The action of cardiac glycosides on sodium and potassium movements in human red cells. J Physiol. 1957 Apr 3;136(1):148–173. doi: 10.1113/jphysiol.1957.sp005749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. HEGSTED M. Comparative studies on the effect of dietary fats on serum cholesterol levels. Fed Proc. 1959 Jul;18(2 Pt 2):52–54. [PubMed] [Google Scholar]
  15. HODGKIN A. L., HOROWICZ P. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol. 1959 Oct;148:127–160. doi: 10.1113/jphysiol.1959.sp006278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. JOHNSEN V. K., USSING H. H. The influence of the corticotropic hormone from ox on the active salt uptake in the axolotl. Acta Physiol Scand. 1949 Jan 31;17(1):38–43. doi: 10.1111/j.1748-1716.1949.tb00551.x. [DOI] [PubMed] [Google Scholar]
  17. JOHNSON J. A. Influence of ouabain, strophanthidin and dihydrostrophanthidin on sodium and potassium transport in frog sartorii. Am J Physiol. 1956 Nov;187(2):328–332. doi: 10.1152/ajplegacy.1956.187.2.328. [DOI] [PubMed] [Google Scholar]
  18. KESSLER R. H., HIERHOLZER K., GURD R. S., PITTS R. F. Localization of diuretic action of chlormerodrin in the nephron of the dog. Am J Physiol. 1958 Sep;194(3):540–546. doi: 10.1152/ajplegacy.1958.194.3.540. [DOI] [PubMed] [Google Scholar]
  19. KLEINZELLER A., CORT J. H. The mechanism of action of mercurial preparations on transport processes and the role of thiol groups in the cell membrane of renal tubular cells. Biochem J. 1957 Sep;67(1):15–24. doi: 10.1042/bj0670015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. KOEFOED-JOHNSEN V., USSING H. H. The nature of the frog skin potential. Acta Physiol Scand. 1958 Jun 2;42(3-4):298–308. doi: 10.1111/j.1748-1716.1958.tb01563.x. [DOI] [PubMed] [Google Scholar]
  21. LINDERHOLM H. On the behavior of the sodium pump in from skin at various concentrations of Na ions in the solution on the epithelial side. Acta Physiol Scand. 1954 Jun 21;31(1):36–61. doi: 10.1111/j.1748-1716.1954.tb01113.x. [DOI] [PubMed] [Google Scholar]
  22. MAIZELS M., REMINGTON M. Mercaptomerin and water exchange in cortex slices of rat kidney. J Physiol. 1958 Sep 23;143(2):275–282. doi: 10.1113/jphysiol.1958.sp006058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. MUDGE G. H. Electrolyte and water metabolism of rabbit kidney slices; effect of metabolic inhibitors. Am J Physiol. 1951 Oct;167(1):206–223. doi: 10.1152/ajplegacy.1951.167.1.206. [DOI] [PubMed] [Google Scholar]
  24. NASTUK W. L. Some ionic factors that influence the action of acetylcholine at the muscle end-plate membrane. Ann N Y Acad Sci. 1959 Aug 28;81:317–327. doi: 10.1111/j.1749-6632.1959.tb49316.x. [DOI] [PubMed] [Google Scholar]
  25. PILLAT B., KRAUPP O., GIEBISCH G., STORMANN H. Die Abhängigkeit des elektrischen Ruhepotentials des isoliert durchströmten Säugetiermuskels von der extracellulären Kaliumkonzentration. Pflugers Arch. 1958;266(5):459–472. doi: 10.1007/BF00362250. [DOI] [PubMed] [Google Scholar]
  26. PITTS R. F. Some reflections on mechanisms of action of diuretics. Am J Med. 1958 May;24(5):745–763. doi: 10.1016/0002-9343(58)90378-4. [DOI] [PubMed] [Google Scholar]
  27. POST R. L., MERRITT C. R., KINSOLVING C. R., ALBRIGHT C. D. Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in the human erythrocyte. J Biol Chem. 1960 Jun;235:1796–1802. [PubMed] [Google Scholar]
  28. SCHATZMANN H. J., WINDHAGER E. E., SOLOMON A. K. Single proximal tubules of the Necturus kidney. II. Effect of 2, 4-dinitro-phenol and ouabain on water reabsorption. Am J Physiol. 1958 Dec;195(3):570–574. doi: 10.1152/ajplegacy.1958.195.3.570. [DOI] [PubMed] [Google Scholar]
  29. SHANES A. M. Electrochemical aspects of physiological and pharmacological action in excitable cells. I. The resting cell and its alteration by extrinsic factors. Pharmacol Rev. 1958 Mar;10(1):59–164. [PubMed] [Google Scholar]
  30. SWANSON R. E. Creatinine secretion by the frog renal tubule. Am J Physiol. 1956 Mar;184(3):527–534. doi: 10.1152/ajplegacy.1956.184.3.527. [DOI] [PubMed] [Google Scholar]
  31. WHITTEMBURY G., SUGINO N., SOLOMON A. K. Ionic permeability and electrical potential differences in Necturus kidney cells. J Gen Physiol. 1961 Mar;44:689–712. doi: 10.1085/jgp.44.4.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. WHITTEMBURY G., WINDHAGER E. E. Electrical potential difference measurements in perfused single proximal tubules of Necturus kidney. J Gen Physiol. 1961 Mar;44:679–687. doi: 10.1085/jgp.44.4.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. WINDHAGER E. E., WHITTEMBURY G., OKEN D. E., SCHATZMANN H. J., SOLOMON A. K. Single proximal tubules of the Necturus kidney. III. Dependence of H2O movement on NaCl concentration. Am J Physiol. 1959 Aug;197:313–318. doi: 10.1152/ajplegacy.1959.197.2.313. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES