Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1961 May 1;44(5):997–1027. doi: 10.1085/jgp.44.5.997

Graded and All-or-None Electrogenesis in Arthropod Muscle

II. The effects of alkali-earth and onium ions on lobster muscle fibers

R Werman 1, H Grundfest 1
PMCID: PMC2195125  PMID: 13784437

Abstract

Conversion of graded responsiveness of lobster muscle fibers to all-or-none activity by alkali-earth and tetraethylammonium (TEA) ions appears to be due to a combination of effects. The membrane is hyperpolarized, its resistance is increased, and its sensitivity to external K+ is diminished, all effects which indicate diminished K+ conductance. While the spikes are prolonged, the conductance is higher throughout the response than it is in the resting membrane. Repetitive activity becomes prominent. These effects indicate maintained high conductance for an ion which causes depolarization. This is normally Na+, since its presence in low concentrations potentiates the effects of Ba++, but the alkali-earth ions and TEA can also carry inward charge. Ba++, Sr++, and TEA appear to be more effective than is Ca++ in its normal role, which is probably to depress K+ conductance and Na inactivation. Thus, conversion of graded to all-or-none responsiveness appears to occur because of the relative increase of depolarizing inward ion flux and decrease of repolarizing outward flux.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALTAMIRANO M., COATES C. W., GRUNDFEST H. Mechanisms of direct and neural excitability in electroplaques of electric eel. J Gen Physiol. 1955 Jan 20;38(3):319–360. doi: 10.1085/jgp.38.3.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BURKE W., GINSBORG B. L. The electrical properties of the slow muscle fibre membrane. J Physiol. 1956 Jun 28;132(3):586–598. doi: 10.1113/jphysiol.1956.sp005551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BURKE W., KATZ B., MACHNE X. The effect of quaternary ammonium ions on crustacean nerve fibres. J Physiol. 1953 Dec 29;122(3):588–598. doi: 10.1113/jphysiol.1953.sp005023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BURNSTOCK G., PROSSER C. L. Delayed repolarization in smooth muscles. Proc Soc Exp Biol Med. 1960 Feb;103:269–270. doi: 10.3181/00379727-103-25484. [DOI] [PubMed] [Google Scholar]
  5. CERF J. A., GRUNDFEST H., HOYLE G., McCANN F. V. The mechanism of dual responsiveness in muscle fibers of the grasshopper Romalea microptera. J Gen Physiol. 1959 Nov;43:377–395. doi: 10.1085/jgp.43.2.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cowan S. L., Walter W. G. The effects of tetra-ethylammonium iodide on the electrical response and the accommodation of nerve. J Physiol. 1937 Nov 26;91(2):101–126. doi: 10.1113/jphysiol.1937.sp003547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. FALK G., LANDA J. F. Prolonged response of skeletal muscle in the absence of penetrating anions. Am J Physiol. 1960 Feb;198:289–299. doi: 10.1152/ajplegacy.1960.198.2.289. [DOI] [PubMed] [Google Scholar]
  8. FATT P., GINSBORG B. L. The ionic requirements for the production of action potentials in crustacean muscle fibres. J Physiol. 1958 Aug 6;142(3):516–543. doi: 10.1113/jphysiol.1958.sp006034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. FATT P., KATZ B. The electrical properties of crustacean muscle fibres. J Physiol. 1953 Apr 28;120(1-2):171–204. doi: 10.1113/jphysiol.1953.sp004884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. FRANKENHAEUSER B., HODGKIN A. L. The action of calcium on the electrical properties of squid axons. J Physiol. 1957 Jul 11;137(2):218–244. doi: 10.1113/jphysiol.1957.sp005808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. FRANKENHAEUSER B., WALTMAN B. Membrane resistance and conduction velocity of large myelinated nerve fibres from Xenopus laevis. J Physiol. 1959 Oct;148:677–682. doi: 10.1113/jphysiol.1959.sp006317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. GAFFEY C. T., MULLINS L. J. Ion fluxes during the action potential in Chara. J Physiol. 1958 Dec 30;144(3):505–524. doi: 10.1113/jphysiol.1958.sp006116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. GREENGARD P., STRAUB R. W. Restoration by barium of action potentials in sodium-deprived mammalian B and C fibres. J Physiol. 1959 Mar 12;145(3):562–569. doi: 10.1113/jphysiol.1959.sp006162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. GRUNDFEST H., KAO C. Y., ALTAMIRANO M. Bioelectric effects of ions microinjected into the giant axon of Loligo. J Gen Physiol. 1954 Nov 20;38(2):245–282. doi: 10.1085/jgp.38.2.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. GRUNDFEST H., REUBEN J. P., RICKLES W. H., Jr The electrophysiology and pharmacology of lobster neuromuscular synapses. J Gen Physiol. 1959 Jul 20;42(6):1301–1323. doi: 10.1085/jgp.42.6.1301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. GRUNDFEST H. The mechanisms of discharge of the electric organs in relation to general and comparative electrophysiology. Prog Biophys Biophys Chem. 1957;7:1–85. [PubMed] [Google Scholar]
  17. HAGIWARA S., SAITO N. Voltage-current relations in nerve cell membrane of Onchidium verruculatum. J Physiol. 1959 Oct;148:161–179. doi: 10.1113/jphysiol.1959.sp006279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. HAGIWARA S., WATANABE A. The effect of tetraethylammonium chloride on the muscle membrane examined with an intracellular microelectrode. J Physiol. 1955 Sep 28;129(3):513–527. doi: 10.1113/jphysiol.1955.sp005374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. HASHIMURA S., WRIGHT E. B. Effect of ionic environment on excitability and electrical properties of frog single nerve fiber. J Neurophysiol. 1958 Jan;21(1):24–44. doi: 10.1152/jn.1958.21.1.24. [DOI] [PubMed] [Google Scholar]
  20. HODGKIN A. L., HOROWICZ P. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol. 1959 Oct;148:127–160. doi: 10.1113/jphysiol.1959.sp006278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. JENERICK H. P., GERARD R. W. Membrane potential and threshold of single muscle fibers. J Cell Physiol. 1953 Aug;42(1):79–102. doi: 10.1002/jcp.1030420106. [DOI] [PubMed] [Google Scholar]
  23. JENERICK H. The control of membrane ionic currents by the membrane potential of muscle. J Gen Physiol. 1959 May 20;42(5):923–930. doi: 10.1085/jgp.42.5.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. KLEINFELD M., STEIN E., MEYERS S. Effects of barium chloride on resting and action potentials of ventricular fibers of the frog. Circ Res. 1954 Nov;2(6):488–493. doi: 10.1161/01.res.2.6.488. [DOI] [PubMed] [Google Scholar]
  25. KLEIN R. L., HOLLAND W. C. Transmembrane potentials and fluxes in isolated rabbit atria. Am J Physiol. 1959 Jun;196(6):1292–1296. doi: 10.1152/ajplegacy.1959.196.6.1292. [DOI] [PubMed] [Google Scholar]
  26. KOKETSU K., CERF J. A., NISHI S. Effect of quaternary ammonium ions on electrical activity of spinal ganglion cells in frogs. J Neurophysiol. 1959 Mar;22(2):177–194. doi: 10.1152/jn.1959.22.2.177. [DOI] [PubMed] [Google Scholar]
  27. KOKETSU K., NODA K. Restoration of membrane excitability of calcium-deficient muscles by anodal polarization. Nature. 1960 Jul 16;187:243–244. doi: 10.1038/187243a0. [DOI] [PubMed] [Google Scholar]
  28. MORITA H., YAMASHITA S. Generator potential of insect chemoreceptor. Science. 1959 Oct 9;130(3380):922–922. doi: 10.1126/science.130.3380.922. [DOI] [PubMed] [Google Scholar]
  29. SPYROPOULOS C. S., TASAKI I. Nerve excitiation and synaptic transmission. Annu Rev Physiol. 1960;22:407–432. doi: 10.1146/annurev.ph.22.030160.002203. [DOI] [PubMed] [Google Scholar]
  30. TASAKI I. Demonstration of two stable states of the nerve membrane in potassium-rich media. J Physiol. 1959 Oct;148:306–331. doi: 10.1113/jphysiol.1959.sp006290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. TASAKI I., HAGIWAR A. S. Demonstration of two stable potential states in the squid giant axon under tetraethylammonium chloride. J Gen Physiol. 1957 Jul 20;40(6):859–885. doi: 10.1085/jgp.40.6.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. TASAKI I. Resting and action potentials of reversed polarity in frog nerve cells. Nature. 1959 Nov 14;184(Suppl 20):1574–1575. doi: 10.1038/1841574a0. [DOI] [PubMed] [Google Scholar]
  33. WERMAN R., McCANN F. V., GRUNDFEST H. Graded and all-or-none electrogenesis in arthropod muscle. I. The effects of alkali-earth cations on the neuromuscular system of Romalea microptera. J Gen Physiol. 1961 May;44:979–995. doi: 10.1085/jgp.44.5.979. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES