Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1961 Sep 1;45(1):105–124. doi: 10.1085/jgp.45.1.105

Effects of Temperature on the Generator and Action Potentials of a Sense Organ

Nobusada Ishiko 1, Werner R Loewenstein 1
PMCID: PMC2195154  PMID: 13718006

Abstract

Charge transfer through the receptor membrane of the nonmyelinated ending of Pacinian corpuscles is markedly affected by temperature. The rate of rise and the amplitude of the generator potential in response to a constant mechanical stimulus increase with temperature coefficients of 2.5 and 2.0 respectively. The duration of the falling phase, presumably a purely passive component, and the rise time of the generator potential are but little affected by temperature. The following interpretation is offered: Mechanical stimulation causes the conductance of the receptor membrane to increase and ions to flow along their electrochemical gradients. An energy barrier of about 16,000 cal/mole limits the conductance change. The latter increases, thus, steeply with temperature, causing both the rate of rise and the intensity of the generator current to increase. The membrane of the adjacent Ranvier node behaves in a distinctly different manner. The amplitude of the nodal action potential is little changed over a wide range of temperature, while the durations of its rising and falling phases increase markedly. The electrical threshold of the nodal membrane is rather constant between 40 and 12°C. Below 12°C the threshold rises, and the mechanically elicited generator current fails to meet the threshold requirements of the first node. Cold block of nerve impulse initiation then ensues, although the receptor membrane still continues to produce generator potentials in response to mechanical stimulation.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALVAREZ-BUYLLA R., RAMIREZ DE ARELLANO J. Local responses in Pacinian corpuscles. Am J Physiol. 1953 Jan;172(1):237–244. doi: 10.1152/ajplegacy.1952.172.1.237. [DOI] [PubMed] [Google Scholar]
  2. BOYD I. A., MARTIN A. R. The end-plate potential in mammalian muscle. J Physiol. 1956 Apr 27;132(1):74–91. doi: 10.1113/jphysiol.1956.sp005503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BURKHARDT D. Effect of temperature on isolated stretch-receptor organ of the crayfish. Science. 1959 Feb 13;129(3346):392–393. doi: 10.1126/science.129.3346.392. [DOI] [PubMed] [Google Scholar]
  4. CORABOEUF E., WEIDMANN S. Temperature effects on the electrical activity of Purkinje fibres. Helv Physiol Pharmacol Acta. 1954;12(1):32–41. [PubMed] [Google Scholar]
  5. DEL CASTILLO J., MACHNE X. Effect of temperature on the passive electrical properties of the muscle fibre membrane. J Physiol. 1953 May 28;120(3):431–434. doi: 10.1113/jphysiol.1953.sp004906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DIAMOND J., GRAY J. A., INMAN D. R. The relation between receptor potentials and the concentration of sodium ions. J Physiol. 1958 Jul 14;142(2):382–394. doi: 10.1113/jphysiol.1958.sp006024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DODGE F. A., FRANKENHAEUSER B. Membrane currents in isolated frog nerve fibre under voltage clamp conditions. J Physiol. 1958 Aug 29;143(1):76–90. doi: 10.1113/jphysiol.1958.sp006045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. FATT P., KATZ B. An analysis of the end-plate potential recorded with an intracellular electrode. J Physiol. 1951 Nov 28;115(3):320–370. doi: 10.1113/jphysiol.1951.sp004675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. GRAY J. A., SATO M. Properties of the receptor potential in Pacinian corpuscles. J Physiol. 1953 Dec 29;122(3):610–636. doi: 10.1113/jphysiol.1953.sp005025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HODGKIN A. L., HUXLEY A. F. The components of membrane conductance in the giant axon of Loligo. J Physiol. 1952 Apr;116(4):473–496. doi: 10.1113/jphysiol.1952.sp004718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HODGKIN A. L., KATZ B. The effect of temperature on the electrical activity of the giant axon of the squid. J Physiol. 1949 Aug;109(1-2):240–249. doi: 10.1113/jphysiol.1949.sp004388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HODLER J., STAMPFLI R., TASAKI I. Uber die Wirkung internodaler Abkühlung auf die Erregungsleitung in der isolierten markhaltigen Nervenfaser des Frosches. Pflugers Arch. 1951;253(4-5):380–385. doi: 10.1007/BF00370028. [DOI] [PubMed] [Google Scholar]
  13. ISHIKO N., LOEWENSTEIN W. R. Temperature and charge transfer in a receptor membrane. Science. 1960 Dec 16;132(3442):1841–1842. doi: 10.1126/science.132.3442.1841. [DOI] [PubMed] [Google Scholar]
  14. KATZ B. Depolarization of sensory terminals and the initiation of impulses in the muscle spindle. J Physiol. 1950 Oct 16;111(3-4):261–282. doi: 10.1113/jphysiol.1950.sp004479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LING G., WOODBURY J. W. Effect of temperature on the membrane potential of frog muscle fibers. J Cell Physiol. 1949 Dec;34(3):407–412. doi: 10.1002/jcp.1030340306. [DOI] [PubMed] [Google Scholar]
  16. LOEWENSTEIN W. R., ISHIKO N. Effects of polarization of the receptor membrane and of the first Ranvier node in a sense organ. J Gen Physiol. 1960 May;43:981–998. doi: 10.1085/jgp.43.5.981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. LOEWENSTEIN W. R., RATHKAMP R. The sites for mechano-electric conversion in a Pacinian corpuscle. J Gen Physiol. 1958 Jul 20;41(6):1245–1265. doi: 10.1085/jgp.41.6.1245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. TRAUTWEIN W., GOTTSTEIN U., FEDERSCHMIDT K. Der Einfluss der Temperatur auf den Aktionsstrom des excidierten Purkinje-Fadens, gemessen mit einer intracellulären Elektrode. Pflugers Arch. 1953;258(3):243–260. doi: 10.1007/BF00363463. [DOI] [PubMed] [Google Scholar]
  19. WOODBURY L. A., HECHT H. H., CHRISTOPHERSON A. R. Membrane resting and action potentials of single cardiac muscle fibers of the frog ventricle. Am J Physiol. 1951 Feb;164(2):307–318. doi: 10.1152/ajplegacy.1951.164.2.307. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES