Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1961 Nov 1;45(2):355–369. doi: 10.1085/jgp.45.2.355

Cation Transport in Escherichia coli

I. Intracellular Na and K concentrations and net cation movement

Stanley G Schultz 1, A K Solomon 1
PMCID: PMC2195163  PMID: 13909521

Abstract

Methods have been developed to study the intracellular Na and K concentrations in E. coli, strain K-12. These intracellular cation concentrations have been shown to be functions of the extracellular cation concentrations and the age of the bacterial culture. During the early logarithmic phase of growth, the intracellular K concentration greatly exceeds that of the external medium, whereas the intracellular Na concentration is lower than that of the growth medium. As the age of the culture increases, the intracellular K concentration falls and the intracellular Na concentration rises, changes which are related to the fall in the pH of the medium and to the accumulation of the products of bacterial metabolism. When stationary phase cells, which are rich in Na and poor in K, are resuspended in fresh growth medium, there is a rapid reaccumulation of K and extrusion of Na. These processes represent oppositely directed net ion movements against concentration gradients, and have been shown to be dependent upon the presence of an intact metabolic energy supply.

Full Text

The Full Text of this article is available as a PDF (842.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. COWIE D. B., ROBERTS R. B., ROBERTS I. Z. Potassium metabolism in Escherichia coli; permeability to sodium and potassium ions. J Cell Physiol. 1949 Oct;34(2):243–257. doi: 10.1002/jcp.1030340205. [DOI] [PubMed] [Google Scholar]
  2. DAVIS B. D., MINGIOLI E. S. Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol. 1950 Jul;60(1):17–28. doi: 10.1128/jb.60.1.17-28.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DAWES E. A., FOSTER S. M., DAGLEY S. The influence of pH value and aeration on the growth of Aerobacter aerogenes and Bacterium coli in defined media. J Gen Microbiol. 1953 Apr;8(2):314–322. doi: 10.1099/00221287-8-2-314. [DOI] [PubMed] [Google Scholar]
  4. EDDY A. A., HINSHELWOOD C. The utilization of potassium by Bact. lactis aerogenes. Proc R Soc Lond B Biol Sci. 1950 Jan 10;136(885):544–562. doi: 10.1098/rspb.1950.0005. [DOI] [PubMed] [Google Scholar]
  5. ELSBACH P., SCHWARTZ I. L. Studies on the sodium and potassium transport in rabbit polymorphonuclear leukocytes. J Gen Physiol. 1959 May 20;42(5):883–898. doi: 10.1085/jgp.42.5.883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gale E. F., Epps H. M. The effect of the pH of the medium during growth on the enzymic activities of bacteria (Escherichia coli and Micrococcus lysodeikticus) and the biological significance of the changes produced. Biochem J. 1942 Sep;36(7-9):600–618. doi: 10.1042/bj0360600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HEMPLING H. G. Potassium and sodium movements in the Ehrlich mouse ascites tumor cell. J Gen Physiol. 1958 Jan 20;41(3):565–583. doi: 10.1085/jgp.41.3.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HINKE J. A. Glass micro-electrodes for measuring intracellular activities of sodium and potassium. Nature. 1959 Oct 17;184(Suppl 16):1257–1258. doi: 10.1038/1841257a0. [DOI] [PubMed] [Google Scholar]
  9. HODGKIN A. L., KEYNES R. D. The mobility and diffusion coefficient of potassium in giant axons from Sepia. J Physiol. 1953 Mar;119(4):513–528. doi: 10.1113/jphysiol.1953.sp004863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. KOEFOED-JOHNSEN V., USSING H. H. The nature of the frog skin potential. Acta Physiol Scand. 1958 Jun 2;42(3-4):298–308. doi: 10.1111/j.1748-1716.1958.tb01563.x. [DOI] [PubMed] [Google Scholar]
  11. KREBS H. A., WHITTAM R., HEMS R. Potassium uptake by Alcaligenes faecalis. Biochem J. 1957 May;66(1):53–60. doi: 10.1042/bj0660053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. MACLEOD R. A., ONOFREY E. Nutrition and metabolism of marine bacteria. III. The relation of sodium and potassium to growth. J Cell Physiol. 1957 Dec;50(3):389–401. doi: 10.1002/jcp.1030500305. [DOI] [PubMed] [Google Scholar]
  13. MITCHELL P., MOYLE J. The glycerol-phospho-protein complex envelope of Micrococcus pyogenes. J Gen Microbiol. 1951 Nov;5(5 Suppl):981–992. doi: 10.1099/00221287-5-5-981. [DOI] [PubMed] [Google Scholar]
  14. PAGE E., SOLOMON A. K. Cat heart muscle in vitro. I. Cell volumes and intracellular concentrations in papillary muscle. J Gen Physiol. 1960 Nov;44:327–344. doi: 10.1085/jgp.44.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. ROBERTS R. B., ROBERTS I. Z., COWIE D. B. Potassium metabolism in Escherichia coli; metabolism in the presence of carbohydrates and their metabolic derivatives. J Cell Physiol. 1949 Oct;34(2):259–291. doi: 10.1002/jcp.1030340206. [DOI] [PubMed] [Google Scholar]
  16. SCHULTZ S. G., SOLOMON A. K. A bacterial mutant with impaired potassium transport. Nature. 1960 Aug 27;187:802–804. doi: 10.1038/187802a0. [DOI] [PubMed] [Google Scholar]
  17. WISSEMAN C. L., Jr, SMADEL J. E., HAHN F. E., HOPPS H. E. Mode of action of chloramphenicol. I. Action of chloramphenicol on assimilation of ammonia and on synthesis of proteins and nucleic acids in Escherichia coli. J Bacteriol. 1954 Jun;67(6):662–673. doi: 10.1128/jb.67.6.662-673.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES