Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1961 Nov 1;45(2):205–228. doi: 10.1085/jgp.45.2.205

Studies on Transformations of Hemophilus influenzae

IV. Linked and unlinked transformations

Sol H Goodgal 1
PMCID: PMC2195167  PMID: 13900279

Abstract

Unlinked transformations were demonstrated to occur by varying the multiplicity of DNA molecules taken up by competent cells. The number of doubles was directly proportional to the product of the frequency of singles for varying concentrations of cells. The kinetics of transformation to doubles and the effect of DNA concentration on double transformations were consistent with the concept that the cell must take up two molecules of DNA in order to be doubly transformed. Linked markers, on the other hand, were a constant fraction of the single transformation for variations in DNA or cell concentration, or time. The kinetics of transformation of linked markers was the same as for the kinetics of single transforming factors. It was, therefore, concluded that linked transformations involve interaction between the cell and a molecule of DNA carrying both markers. The frequency of transformation was found to be the same from resistance to sensitivity as from sensitivity to resistance for the markers streptomycin (S) and cathomycin (C). Purified DNAs, in general, show lower levels of linkage than crude DNA preparations, and for some crude preparations all the S markers were linked to C, suggesting that some dispersion, at least, was a result of DNA preparation. The inactivation of linked markers by heat, ultraviolet, and DNAase was studied.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALEXANDER H. E., LEIDY G., HAHN E. Studies on the nature of hemophilus influenzae cells susceptible to heritable changes by desoxyribonucleic acids. J Exp Med. 1954 Jun 1;99(6):505–533. doi: 10.1084/jem.99.6.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. HOTCHKISS R. D., EVANS A. H. Analysis of the complex sulfonamide resistance locus of pneumococcus. Cold Spring Harb Symp Quant Biol. 1958;23:85–97. doi: 10.1101/sqb.1958.023.01.012. [DOI] [PubMed] [Google Scholar]
  3. LEIDY G., HAHN E., ALEXANDER H. E. In vitro production of new types of hemophilus influenzae. J Exp Med. 1953 Apr;97(4):467–482. doi: 10.1084/jem.97.4.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. ZAMENHOF S., LEIDY G., GREER S., HAHN E. Differential stabilities of individual heredity determinants in transforming principle. J Bacteriol. 1957 Aug;74(2):194–199. doi: 10.1128/jb.74.2.194-199.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES