Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1961 Nov 1;45(2):243–265. doi: 10.1085/jgp.45.2.243

The Ionic Mechanisms of Hyperpolarizing Responses in Lobster Muscle Fibers

J P Reuben 1, R Werman 1, H Grundfest 1
PMCID: PMC2195173  PMID: 14491604

Abstract

Lobster muscle fibers develop hyperpolarizing responses when subjected to sufficiently strong hyperpolarizing currents. In contrast to axons of frog, toad, and squid, the muscle fibers produce their responses without the need for prior depolarization in high external K+. Responses begin at a threshold polarization (50 to 70 mv), the potential reaching 150 to 200 mv hyperpolarization while the current remains constant. The increased polarization develops at first slowly, then becomes rapid. It usually subsides from its peak spontaneously, falling temporarily to a potential less hyperpolarized than at threshold for the response. As long as current is applied there can be oscillatory behavior with sequential rise and subsidence of the polarization, repeating a number of times. Withdrawal of current leads to rapid return of the potential to the resting level and a small, brief depolarization. Associated with the latter, but of longer duration, is an increased conductance whose magnitude and duration increase with the antecedent current. Hyperpolarizing responses of lobster muscle fibers are due to increased membrane resistance caused by hyperpolarizing K inactivation. The oscillatory characteristic of the response is due to a delayed superimposed and prolonged increase in membrane permeability, probably for Na+ and for either K+ or Cl-. The hyperpolarizing responses of other tissues also appear to result from hyperpolarizing K inactivation, on which is superimposed an increased conductance for some other ion or ions.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADRIAN R. H. Potassium chloride movement and the membrane potential of frog muscle. J Physiol. 1960 Apr;151:154–185. [PMC free article] [PubMed] [Google Scholar]
  2. BENNETT M. V., CRAIN S. M., GRUNDFEST H. Electrophysiology of supramedullary neurons in Spheroides maculatus. I. Orthodromic and antidromic responses. J Gen Physiol. 1959 Sep;43:159–188. doi: 10.1085/jgp.43.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BENNETT M. V., GRUNDFEST H. Electrophysiology of electric organ in Gymnotus carapo. J Gen Physiol. 1959 May 20;42(5):1067–1104. doi: 10.1085/jgp.42.5.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. FATT P., KATZ B. An analysis of the end-plate potential recorded with an intracellular electrode. J Physiol. 1951 Nov 28;115(3):320–370. doi: 10.1113/jphysiol.1951.sp004675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. GRUNDFEST H. Electrical inexcitability of synapses and some consequences in the central nervous system. Physiol Rev. 1957 Jul;37(3):337–361. doi: 10.1152/physrev.1957.37.3.337. [DOI] [PubMed] [Google Scholar]
  6. GRUNDFEST H. Ionic mechanisms in electrogenesis. Ann N Y Acad Sci. 1961 Sep 6;94:405–457. doi: 10.1111/j.1749-6632.1961.tb35554.x. [DOI] [PubMed] [Google Scholar]
  7. GRUNDFEST H., REUBEN J. P., RICKLES W. H., Jr The electrophysiology and pharmacology of lobster neuromuscular synapses. J Gen Physiol. 1959 Jul 20;42(6):1301–1323. doi: 10.1085/jgp.42.6.1301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. GRUNDFEST H. The mechanisms of discharge of the electric organs in relation to general and comparative electrophysiology. Prog Biophys Biophys Chem. 1957;7:1–85. [PubMed] [Google Scholar]
  9. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hodgkin A. L., Huxley A. F. Resting and action potentials in single nerve fibres. J Physiol. 1945 Oct 15;104(2):176–195. doi: 10.1113/jphysiol.1945.sp004114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. ITO M. The electrical activity of spinal ganglion cells investigated with intracellular microelectrodes. Jpn J Physiol. 1957 Dec 20;7(4):297–323. doi: 10.2170/jjphysiol.7.297. [DOI] [PubMed] [Google Scholar]
  12. KAO C. Y., GRUNDFEST H. Membrane potentials of the squid giant axon recorded with an inserted antimony microelectrode. Experientia. 1957 Apr 15;13(4):140–141. doi: 10.1007/BF02158132. [DOI] [PubMed] [Google Scholar]
  13. MOORE J. W. Excitation of the squid axon membrane in isosmotic potassium chloride. Nature. 1959 Jan 24;183(4656):265–266. doi: 10.1038/183265b0. [DOI] [PubMed] [Google Scholar]
  14. SPYROPOULOS C. S., TASAKI I. Nerve excitiation and synaptic transmission. Annu Rev Physiol. 1960;22:407–432. doi: 10.1146/annurev.ph.22.030160.002203. [DOI] [PubMed] [Google Scholar]
  15. TASAKI I. Demonstration of two stable states of the nerve membrane in potassium-rich media. J Physiol. 1959 Oct;148:306–331. doi: 10.1113/jphysiol.1959.sp006290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. WERMAN R., GRUNDFEST H. Graded and all-or-none electrogenesis in arthropod muscle. II. The effects of alkali-earth and onium ions on lobster muscle fibers. J Gen Physiol. 1961 May;44:997–1027. doi: 10.1085/jgp.44.5.997. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES