Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1962 Jan 1;45(3):529–543. doi: 10.1085/jgp.45.3.529

Movement of Sodium Across the Mucosal Surface of the Isolated Toad Bladder and its Modification by Vasopressin

Howard S Frazier 1, Eleanor F Dempsey 1, Alexander Leaf 1
PMCID: PMC2195175  PMID: 13894805

Abstract

Studies have been made on the isolated urinary bladder of the toad, Bufo marinus, in an attempt to evaluate gradients of chemical activity across the mucosal surfaces of the epithelial cells which would serve to maintain a net movement of sodium from the mucosal medium into the cells. The likelihood of such chemical gradients has been established by the demonstration of lower contents of sodium within the tissue, expressed as microequivalents per gram of tissue water, than of concentrations of sodium in the mucosal medium at all levels of the latter examined. The transepithelial transport of sodium and the sodium content of the tissue were found to increase rapidly with rise in concentration of sodium in the mucosal medium up to values of 30 to 60 meq per liter. Further increase in concentration of the medium above this value failed to induce further stimulation of sodium transport or increase in the sodium content of the tissue. Vasopressin increased the rate of transport of sodium at every concentration of sodium in the mucosal medium without altering this relationship. Although entry of sodium across the mucosal surface of the epithelial cells may be passive it is not by free diffusion but involves some considerable interaction with the mucosal surface of the bladder and constitutes the major determinant of the rate of transepithelial transport of sodium. Vasopressin acts to enhance this initial step in the transport of sodium.

Full Text

The Full Text of this article is available as a PDF (908.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. FRAZIER H. S. The electrical potential profile of the isolated toad bladder. J Gen Physiol. 1962 Jan;45:515–528. doi: 10.1085/jgp.45.3.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. HAYS R. M., LEAF A. The problem of clinical vasopressin resistance: in vitro studies. Ann Intern Med. 1961 Apr;54:700–709. doi: 10.7326/0003-4819-54-4-700. [DOI] [PubMed] [Google Scholar]
  3. HOSHIKO T., USSING H. H. The kinetics of Na24 flux across amphibian skin and bladder. Acta Physiol Scand. 1960 May 25;49:74–81. doi: 10.1111/j.1748-1716.1960.tb01931.x. [DOI] [PubMed] [Google Scholar]
  4. KOEFOED-JOHNSEN V., USSING H. H. The nature of the frog skin potential. Acta Physiol Scand. 1958 Jun 2;42(3-4):298–308. doi: 10.1111/j.1748-1716.1958.tb01563.x. [DOI] [PubMed] [Google Scholar]
  5. LEAF A., ANDERSON J., PAGE L. B. Active sodium transport by the isolated toad bladder. J Gen Physiol. 1958 Mar 20;41(4):657–668. doi: 10.1085/jgp.41.4.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. LEAF A., DEMPSEY E. Some effects of mammalian neurohypophyseal hormones on metabolism and active transport of sodium by the isolated toad bladder. J Biol Chem. 1960 Jul;235:2160–2163. [PubMed] [Google Scholar]
  7. LEAF A., HAYS R. M. The effects of neurohypophyseal hormone on permeability and transport in a living membrane. Recent Prog Horm Res. 1961;17:467–492. [PubMed] [Google Scholar]
  8. LEAF A., PAGE L. B., ANDERSON J. Respiration and active sodium transport of isolated toad bladder. J Biol Chem. 1959 Jun;234(6):1625–1629. [PubMed] [Google Scholar]
  9. LEAF A. Some actions of neurohypophyseal hormones on a living membrane. J Gen Physiol. 1960 May;43:175–189. doi: 10.1085/jgp.43.5.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LEAF A. The mechanism of the asymmetrical distribution of endogenous lactate about the isolated toad bladder. J Cell Comp Physiol. 1959 Aug;54:103–108. doi: 10.1002/jcp.1030540111. [DOI] [PubMed] [Google Scholar]
  11. MAFFLY R. H., HAYS R. M., LAMDIN E., LEAF A. The effect of neurohypophyseal hormones on the permeability of the toad bladder to urea. J Clin Invest. 1960 Apr;39:630–641. doi: 10.1172/JCI104078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. SNELL F. M., LEEMAN C. P. Temperature coefficients of the sodium transport system of isolated frog skin. Biochim Biophys Acta. 1957 Aug;25(2):311–320. doi: 10.1016/0006-3002(57)90474-2. [DOI] [PubMed] [Google Scholar]
  13. USSING H. H., ZERAHN K. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand. 1951 Aug 25;23(2-3):110–127. doi: 10.1111/j.1748-1716.1951.tb00800.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES