Abstract
The calcium in guinea pig atria can be divided into three components by kinetic studies with Ca45: (a) a rapidly exchangeable fraction with a half-time of 4.5 minutes; (b) a slowly exchangeable fraction with a half-time of 86 (or 168) minutes; and (c) an inexchangeable fraction. In Krebs-Henseleit solution containing 2.5 mM calcium, the calcium content of the tissue at rest remains constant, the flux being about 0.02 µµmol/cm2-second. An increase or a decrease in extracellular calcium concentration by 1.25 mM causes a proportionate change in influx. A large increase in Ca45 entry, equivalent to as much as 0.55 µµ/mol/cm2 accompanies a contraction. When the strength of contraction is varied by stimulating at different frequencies or in solutions containing calcium at different concentrations, the increment of Ca45 uptake per beat changes proportionally with the strength of the beat. Total atrial calcium is not increased by stimulation; however, the increase in outflux of Ca45 during contraction that this constant tissue calcium implies could not be demonstrated under the experimental conditions employed. The observations are discussed in the light of the possible role of calcium transfer in excitation-contraction coupling.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ABBOTT B. C., MOMMAERTS W. F. A study of inotropic mechanisms in the papillary muscle preparation. J Gen Physiol. 1959 Jan 20;42(3):533–551. doi: 10.1085/jgp.42.3.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BIANCHI C. P., SHANES A. M. Calcium influx in skeletal muscle at rest, during activity, and during potassium contracture. J Gen Physiol. 1959 Mar 20;42(4):803–815. doi: 10.1085/jgp.42.4.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CRANEFIELD P. F., HOFFMAN B. F. Electrophysiology of single cardiac cells. Physiol Rev. 1958 Jan;38(1):41–76. doi: 10.1152/physrev.1958.38.1.41. [DOI] [PubMed] [Google Scholar]
- DENSON J. R. Flame photometric determination of electrolytes in tissue and of calcium in serum. J Biol Chem. 1954 Jul;209(1):233–240. [PubMed] [Google Scholar]
- ELLENBOGEN E., IYENGAR R., STERN H., OLSON R. E. Characterization of myosin from normal dog heart. J Biol Chem. 1960 Sep;235:2642–2648. [PubMed] [Google Scholar]
- FENN W. O., GILBERT D. L. Calcium equilibrium in muscle. J Gen Physiol. 1957 Jan 20;40(3):393–408. doi: 10.1085/jgp.40.3.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HARRIS E. J. The output of 45Ca from frog muscle. Biochim Biophys Acta. 1957 Jan;23(1):80–87. doi: 10.1016/0006-3002(57)90287-1. [DOI] [PubMed] [Google Scholar]
- HENROTTE J. G., COSMOS E., FENN W. O. Ca exchange in isolated turtle ventricle. Am J Physiol. 1960 Nov;199:779–782. doi: 10.1152/ajplegacy.1960.199.5.779. [DOI] [PubMed] [Google Scholar]
- HODGKIN A. L., KEYNES R. D. Movements of labelled calcium in squid giant axons. J Physiol. 1957 Sep 30;138(2):253–281. doi: 10.1113/jphysiol.1957.sp005850. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KEYNES R. D., SWAN R. C. The effect of external sodium concentration on the sodium fluxes in frog skeletal muscle. J Physiol. 1959 Oct;147:591–625. doi: 10.1113/jphysiol.1959.sp006264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mines G. R. On functional analysis by the action of electrolytes. J Physiol. 1913 Jun 19;46(3):188–235. doi: 10.1113/jphysiol.1913.sp001588. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NIEDERGERKE R. Calcium and the activation of contraction. Experientia. 1959 Apr 15;15(4):128–130. doi: 10.1007/BF02165519. [DOI] [PubMed] [Google Scholar]
- NIEDERGERKE R., HARRIS E. J. Accumulation of calcium (or strontium) under conditions of increasing contractility. Nature. 1957 May 25;179(4569):1068–1069. doi: 10.1038/1791068a0. [DOI] [PubMed] [Google Scholar]
- NIEDERGERKE R., LUTTGAU H. C. Antagonism between calcium and sodium ions. Nature. 1957 May 25;179(4569):1066–1067. doi: 10.1038/1791066a0. [DOI] [PubMed] [Google Scholar]
- NIEDERGERKE R. The potassium chloride contracture of the heart and its modification by calcium. J Physiol. 1956 Dec 28;134(3):584–599. doi: 10.1113/jphysiol.1956.sp005667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROBERTSON P. A. Calcium and contractility in depolarized smooth muscle. Nature. 1960 Apr 23;186:316–317. doi: 10.1038/186316a0. [DOI] [PubMed] [Google Scholar]
- Ringer S. A further Contribution regarding the influence of the different Constituents of the Blood on the Contraction of the Heart. J Physiol. 1883 Jan;4(1):29–42.3. doi: 10.1113/jphysiol.1883.sp000120. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SEKUL A. A., HOLLAND W. C. C1-36 and Ca-45 exchange in atrial fibrillation. Am J Physiol. 1959 Oct;197:752–756. doi: 10.1152/ajplegacy.1959.197.4.752. [DOI] [PubMed] [Google Scholar]
- SHANES A. M., BERMAN M. D. Penetration of the desheathed toad sciatic nerve by ions and molecules. II. Kinetics. J Cell Physiol. 1955 Apr;45(2):199–240. doi: 10.1002/jcp.1030450205. [DOI] [PubMed] [Google Scholar]
- SHANES A. M., BIANCHI C. P. Radiocalcium release by stimulated and potassium-treated sartorius muscles of the frog. J Gen Physiol. 1960 Jan;43:481–493. doi: 10.1085/jgp.43.3.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SHANES A. M. Calcium influx in frog rectus abdominus muscle at rest and during potassium contracture. J Cell Comp Physiol. 1961 Jun;57:193–202. doi: 10.1002/jcp.1030570308. [DOI] [PubMed] [Google Scholar]
- THOMAS L. J., Jr ouabain contracture of frog heart: Ca 45 movements and effect of EDTA. Am J Physiol. 1960 Jul;199:146–150. doi: 10.1152/ajplegacy.1960.199.1.146. [DOI] [PubMed] [Google Scholar]
- WARE F., Jr, BENNETT A. L., McINTYRE A. R. Effects of calcium deficiency on cell membrane potentials of isolated frog hearts. Am J Physiol. 1960 Mar;198:547–551. doi: 10.1152/ajplegacy.1960.198.3.547. [DOI] [PubMed] [Google Scholar]