Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1962 Jan 1;45(3):395–410. doi: 10.1085/jgp.45.3.395

Interaction of Mercury with Human Erythrocytes

R Weed 1, J Eber 1, A Rothstein 1
PMCID: PMC2195179  PMID: 14005533

Abstract

The binding of mercury to red blood cells was measured in terms of Hg203 uptake and desorption. The significant features of the binding are: (a) rapid achievement of equilibrium (3 to 5 minutes); (b) release of a Hg-complexing material from the red cells themselves which distorts the binding curves at low concentrations of metal (2.5 x 10-7 to 5.0 x 10-6 M); (c) prevention of binding by cysteine, glutathione, penicillamine, and EDTA but not by imidazole or histidine; (d) binding of mercury in amounts up to 7 times the reduced glutathione concentration of the cells before combination with glutathione itself; (e) binding primarily to sulfhydryl groups of hemoglobin and to a small number of stromal sulfhydryl groups, but also to other non-sulfhydryl cellular ligands after saturation of the sulfhydryl groups. Associated with the binding is inhibition of glucose uptake, induction of loss of K+, and decrease in osmotic fragility. These effects increase over the range of concentrations (1 x 10-17 to 1 x 10-15 moles of Hg/RBC) well below those that result in saturation of the cellular binding sites; above 1 x 10-15 moles/RBC, the effects decrease as the cells become saturated.

Full Text

The Full Text of this article is available as a PDF (909.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLISON A. C., CECIL R. The thiol groups of normal adult human haemoglobin. Biochem J. 1958 May;69(1):27–34. doi: 10.1042/bj0690027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BENESCH R. E., LARDY H. A., BENESCH R. The sulfhydryl groups of crystalline proteins. I. Some albumins, enzymes, and hemoglobins. J Biol Chem. 1955 Oct;216(2):663–676. [PubMed] [Google Scholar]
  3. BRECHER G., SCHNEIDERMAN M., WILLIAMS G. Z. Evaluation of electronic red blood cell counter. Am J Clin Pathol. 1956 Dec;26(12):1439–1449. doi: 10.1093/ajcp/26.12.1439. [DOI] [PubMed] [Google Scholar]
  4. COLE R. D., STEIN W. H., MOORE S. On the cysteine content of human hemoglobin. J Biol Chem. 1958 Dec;233(6):1359–1363. [PubMed] [Google Scholar]
  5. CROSBY W. H., MUNN J. I., FURTH F. W. Standardizing a method for clinical hemoglobinometry. U S Armed Forces Med J. 1954 May;5(5):693–703. [PubMed] [Google Scholar]
  6. ELLMAN G. L. A colorimetric method for determining low concentrations of mercaptans. Arch Biochem Biophys. 1958 Apr;74(2):443–450. doi: 10.1016/0003-9861(58)90014-6. [DOI] [PubMed] [Google Scholar]
  7. ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
  8. GRUNERT R. R., PHILLIPS P. H. A modification of the nitroprusside method of analysis for glutathione. Arch Biochem. 1951 Feb;30(2):217–225. [PubMed] [Google Scholar]
  9. JANDL J. H., SIMMONS R. L. The agglutination and sensitization of red cells by metallic cations: interactions between multivalent metals and the red-cell membrane. Br J Haematol. 1957 Jan;3(1):19–38. doi: 10.1111/j.1365-2141.1957.tb05768.x. [DOI] [PubMed] [Google Scholar]
  10. JOYCE C. R., MOORE H., WEATHERALL M. The effects of lead, mercury, and gold on the potassium turnover of rabbit blood cells. Br J Pharmacol Chemother. 1954 Dec;9(4):463–470. doi: 10.1111/j.1476-5381.1954.tb00862.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. MURAYAMA M. Titratable sulfhydryl groups of normal and sickle cell hemoglobins at O degrees and 38 degrees. J Biol Chem. 1957 Sep;228(1):231–240. [PubMed] [Google Scholar]
  12. PASSOW H., ROTHSTEIN A., CLARKSON T. W. The general pharmacology of the heavy metals. Pharmacol Rev. 1961 Jun;13:185–224. [PubMed] [Google Scholar]
  13. Parpart A. K., Lorenz P. B., Parpart E. R., Gregg J. R., Chase A. M. THE OSMOTIC RESISTANCE (FRAGILITY) OF HUMAN RED CELLS. J Clin Invest. 1947 Jul;26(4):636–640. doi: 10.1172/JCI101847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. SCATCHARD G., BLACK E. S. The effect of salts on the isoionic and isoelectric points of proteins. J Phys Colloid Chem. 1949 Jan;53(1):88–99. [PubMed] [Google Scholar]
  15. STEIN W. H., KUNKEL H. G., COLE R. D., SPACKMAN D. H., MOORE S. Observation on the amino acid composition of human hemoglobins. Biochim Biophys Acta. 1957 Jun;24(3):640–642. doi: 10.1016/0006-3002(57)90261-5. [DOI] [PubMed] [Google Scholar]
  16. VINCENT P. C. The effects of heavy metal ions on the human erythrocyte. II. The effects of lead and mercury. Aust J Exp Biol Med Sci. 1958 Dec;36(6):589–601. doi: 10.1038/icb.1958.64. [DOI] [PubMed] [Google Scholar]
  17. WALTNER K., Jr, CSERNOVSZKY M. Effects of metal salts on the electrolyte content of human red blood cells. Clin Chim Acta. 1960 Mar;5:230–234. doi: 10.1016/0009-8981(60)90040-1. [DOI] [PubMed] [Google Scholar]
  18. WEED R. I., ROTHSTEIN A. The uptake of divalent manganese ion by mature normal human red blood cells. J Gen Physiol. 1960 Nov;44:301–314. doi: 10.1085/jgp.44.2.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. WEED R., EBER J., ROTHSTEIN A. Effects of Primaquine and other related compounds on the red blood cell membrane. I. Sodium ion and potassium ion permeability in normal human cells. J Clin Invest. 1961 Jan;40:130–139. doi: 10.1172/JCI104226. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES