Abstract
A procedure is described for the purification of salmon testis deoxyribonuclease II by means of acid extraction, fractional precipitation with ammonium sulfate, heat denaturation of extraneous proteins, and ethanol fractionation. This process separates the deoxyribonuclease activity from that of ribonuclease, phosphatase, phosphodiesterase, and protease. Over 50 per cent of the activity is retained with an over-all enrichment of 20,000-fold. The enzyme degrades both native and heat-denatured DNA, but the rate of degradation of the latter is only one-tenth that of the former. It does not hydrolyze apurinic acid. The enzyme is most stable in the pH range 4 to 5. Electrolytes are essential for the expression of its activity: monovalent ions satisfy the requirement, but divalent ones are much more effective. Above a certain optimum concentration, each electrolyte is inhibitory. The pH of maximal activity, under conditions of optimal ionic strength, is 4.8; the temperature optimum is near to 55°C.
Full Text
The Full Text of this article is available as a PDF (998.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALLFREY V., MIRSKY A. E. Some aspects of the desoxyribonuclease activities of animal tissues. J Gen Physiol. 1952 Nov;36(2):227–241. doi: 10.1085/jgp.36.2.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BRODY S., BALIS M. E. Mechanism of growth. I. Interrelation between deoxyribonuclease and deoxyribonucleic acid synthesis in nonmalignant growth. Cancer Res. 1959 Jun;19(5):538–543. [PubMed] [Google Scholar]
- BRODY S., THORELL B. Ribonuclease and desoxyribonuclease activities in normal and regenerating bone marrow homogenates. Biochim Biophys Acta. 1957 Sep;25(3):579–585. doi: 10.1016/0006-3002(57)90530-9. [DOI] [PubMed] [Google Scholar]
- CUNNINGHAM L. Micrococcal nuclease and some products of its action. Ann N Y Acad Sci. 1959 Sep 4;81:788–791. doi: 10.1111/j.1749-6632.1959.tb49360.x. [DOI] [PubMed] [Google Scholar]
- EMANUEL C. F., CHAIKOFF I. L. The large scale preparation of sodium desoxyribonucleate from ripe salmon testes. J Biol Chem. 1953 Jul;203(1):167–171. [PubMed] [Google Scholar]
- FREDERICQ E., OTH A. Enzymic degradation of deoxyribonucleic acid. I. Purification of acid deoxyribonuclease. Biochim Biophys Acta. 1958 Aug;29(2):281–287. doi: 10.1016/0006-3002(58)90186-0. [DOI] [PubMed] [Google Scholar]
- GOUTIER-PIROTTE M. [The activity of acid desoxyribonuclease in the native state and its purification]. Enzymologia. 1960 Jun 1;22:37–46. [PubMed] [Google Scholar]
- Goodwin T. W., Morton R. A. The spectrophotometric determination of tyrosine and tryptophan in proteins. Biochem J. 1946;40(5-6):628–632. doi: 10.1042/bj0400628. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KOERNER J. F., SINSHEIMER R. L. A deoxyribonuclease from calf spleen. I. Purification and properties. J Biol Chem. 1957 Oct;228(2):1039–1048. [PubMed] [Google Scholar]
- KOSZALKA T. R., FALKENHEIM R., ALTMAN K. I. Purification of splenic desoxyribonuclease II. Biochim Biophys Acta. 1957 Mar;23(3):647–648. doi: 10.1016/0006-3002(57)90390-6. [DOI] [PubMed] [Google Scholar]
- KUNITZ M. Crystalline desoxyribonuclease; isolation and general properties; spectrophotometric method for the measurement of desoxyribonuclease activity. J Gen Physiol. 1950 Mar;33(4):349–362. doi: 10.1085/jgp.33.4.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KURNICK N. B., SANDEEN G. Interdependence of pH and electrolyte concentration optima for acid deoxyribonuclease activity. Arch Biochem Biophys. 1959 Dec;85:323–333. doi: 10.1016/0003-9861(59)90498-9. [DOI] [PubMed] [Google Scholar]
- LASKOWSKI M. Enzymes hydrolyzing DNA. Ann N Y Acad Sci. 1959 Sep 4;81:776–783. doi: 10.1111/j.1749-6632.1959.tb49358.x. [DOI] [PubMed] [Google Scholar]
- LEHMAN I. R. The deoxyribonucleases of Escherichia coli. I. Purification and properties of a phosphodiesterase. J Biol Chem. 1960 May;235:1479–1487. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- MANDELL J. D., HERSHEY A. D. A fractionating column for analysis of nucleic acids. Anal Biochem. 1960 Jun;1:66–77. doi: 10.1016/0003-2697(60)90020-8. [DOI] [PubMed] [Google Scholar]
- MAVER M. E., GRECO A. E. The nuclease activities of cathepsin preparations from calf spleen and thymus. J Biol Chem. 1949 Dec;181(2):861–870. [PubMed] [Google Scholar]
- MIYAJI T., GREENSTEIN J. P. Cation activation of desoxyribonuclease. Arch Biochem Biophys. 1951 Jul;32(2):414–423. doi: 10.1016/0003-9861(51)90291-3. [DOI] [PubMed] [Google Scholar]
- McDONALD M. R., KAUFMANN B. P. The degradation by ribonuclease of substrates other than ribonucleic acid. J Histochem Cytochem. 1954 Sep;2(5):387–394. doi: 10.1177/2.5.387. [DOI] [PubMed] [Google Scholar]
- OTH A., FREDERICQ E., HACHA R. Enzymic degradation of deoxyribonucleic acid. II. Enzymic properties of thymus acid deoxyribonuclease. Biochim Biophys Acta. 1958 Aug;29(2):287–296. doi: 10.1016/0006-3002(58)90187-2. [DOI] [PubMed] [Google Scholar]
- SHACK J. Deoxyribonucleases of mouse tissues. J Biol Chem. 1957 Jun;226(2):573–581. [PubMed] [Google Scholar]
- SHACK J. The influence of sodium and magnesium ions on the action of deoxyribonuclease II. J Biol Chem. 1959 Nov;234:3003–3006. [PubMed] [Google Scholar]
- SHIMOMURA M., LASKOWSKI M. Purification of deoxyribonuclease II from spleen. Biochim Biophys Acta. 1957 Oct;26(1):198–199. doi: 10.1016/0006-3002(57)90071-9. [DOI] [PubMed] [Google Scholar]
- TAMM C., SHAPIRO H. S., CHARGAFF E. Correlation between the action of pancreatic desoxyribonuclease and the nature of its substrates. J Biol Chem. 1952 Nov;199(1):313–327. [PubMed] [Google Scholar]
- WEBB M. The preparation and properties of the deoxypentosenucleases of calf thymus and mouse leukaemic tissue. Exp Cell Res. 1953 Sep;5(1):27–37. doi: 10.1016/0014-4827(53)90091-3. [DOI] [PubMed] [Google Scholar]
