Abstract
Evidence relating to the structure and properties of swine pepsinogen and pepsin has been reviewed and used to suggest a tentative two dimensional picture of the skeleton of these two proteins. When pepsinogen, a folded single peptide chain, is converted to pepsin, there is a profound change in the physical and chemical properties of the protein. In an as yet unknown manner, except that it is initiated by a peptic cleavage of the protein chain, a single enzymic site is formed. This site is made up, quite probably, of the secondary carboxyl group of glutamic acid or of aspartic acid and a tyrosine phenol group in close proximity so that they can form hydrogen or hydrophobic bonds with the substrate in some unique manner that permits hydrolysis to occur at an accelerated rate.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ANFINSEN C. B., REDFIELD R. R. Protein structure in relation to function and biosynthesis. Adv Protein Chem. 1956;11:1–100. doi: 10.1016/s0065-3233(08)60420-9. [DOI] [PubMed] [Google Scholar]
- BAILEY J. L., MOORE S., STEIN W. H. Peptides obtained by peptic hydrolysis of performic acid-oxidized ribonuclease. J Biol Chem. 1956 Jul;221(1):143–150. [PubMed] [Google Scholar]
- BAKER L. E. New synthetic substrates for pepsin. J Biol Chem. 1951 Dec;193(2):809–819. [PubMed] [Google Scholar]
- BAKER L. E. The kinetics of the action of pepsin on synthetic substrates. J Biol Chem. 1954 Dec;211(2):701–716. [PubMed] [Google Scholar]
- BALLS A. K., JANSEN E. F. Stoichiometric inhibition of chymotrypsin. Adv Enzymol Relat Subj Biochem. 1952;13:321–343. doi: 10.1002/9780470122587.ch8. [DOI] [PubMed] [Google Scholar]
- BALLS A. K., WOOD H. N. Acetyl chymotrypsin and its reaction with ethanol. J Biol Chem. 1956 Mar;219(1):245–256. [PubMed] [Google Scholar]
- BLUMENFELD O. O., PERLMANN G. E. Ultraviolet difference spectra of pepsin. J Gen Physiol. 1959 Jan 20;42(3):563–570. doi: 10.1085/jgp.42.3.563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HAYES J. E., Jr, VELICK S. F. Yeast alcohol dehydrogenase: molecular weight, coenzyme binding, and reaction equilibria. J Biol Chem. 1954 Mar;207(1):225–244. [PubMed] [Google Scholar]
- HEIRWEGH K., EDMAN P. Purification and N-terminal determination of crystalline pepsin. Biochim Biophys Acta. 1957 Apr;24(1):219–220. doi: 10.1016/0006-3002(57)90178-6. [DOI] [PubMed] [Google Scholar]
- HERRIOTT R. M. The active groups of pepsin. J Cell Physiol Suppl. 1956 May;47(Suppl 1):239–243. doi: 10.1002/jcp.1030470417. [DOI] [PubMed] [Google Scholar]
- HERRIOTT R. M., VAN VUNAKIS H. Structural changes associated with the conversion of pepsinogen to pepsin. I. The N-terminal amino acid residue and amino acid composition of the pepsin inhibitor. Biochim Biophys Acta. 1956 Dec;22(3):537–543. doi: 10.1016/0006-3002(56)90064-6. [DOI] [PubMed] [Google Scholar]
- HIRS C. H., MOORE S., STEIN W. H. The sequence of the amino acid residues in performic acid-oxidized ribonuclease. J Biol Chem. 1960 Mar;235:633–647. [PubMed] [Google Scholar]
- Herriott R. M., Anson M. L., Northrop J. H. REACTION OF ENZYMES AND PROTEINS WITH MUSTARD GAS (BIS(beta-CHLOROETHYL)SULFIDE). J Gen Physiol. 1946 Nov 20;30(2):185–210. doi: 10.1085/jgp.30.2.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herriott R. M., Northrop J. H. ISOLATION OF CRYSTALLINE PEPSINOGEN FROM SWINE GASTRIC MUCOSAE AND ITS AUTOCATALYTIC CONVERSION INTO PEPSIN. Science. 1936 May 15;83(2159):469–470. doi: 10.1126/science.83.2159.469. [DOI] [PubMed] [Google Scholar]
- JANSEN E. F., NUTTING F., BALLS A. K. Mode of inhibition of chymotrypsin by diisopropyl fluorophosphate; introduction of phosphorus. J Biol Chem. 1949 May;179(1):201–204. [PubMed] [Google Scholar]
- KATCHALSKI E., BERGER A., NEUMANN H. Reversible inhibition of pepsin by polylysine. Nature. 1954 May 22;173(4412):998–999. doi: 10.1038/173998a0. [DOI] [PubMed] [Google Scholar]
- LINDLEY H. The mechanism of action of hydrolytic enzymes. Adv Enzymol Relat Subj Biochem. 1954;15:271–299. doi: 10.1002/9780470122600.ch6. [DOI] [PubMed] [Google Scholar]
- Mehl J. W., Oncley J. L., Simha R. VISCOSITY AND THE SHAPE OF PROTEIN MOLECULES. Science. 1940 Aug 9;92(2380):132–133. doi: 10.1126/science.92.2380.132. [DOI] [PubMed] [Google Scholar]
- NEURATH H., DIXON G. H. Structure and activation of trypsinogen and chymotrypsinogen. Fed Proc. 1957 Sep;16(3):791–801. [PubMed] [Google Scholar]
- PASSMANN J. M., WILLIAMSON M. B. The amino acid sequence at the N terminus of pepsin. J Biol Chem. 1956 Sep;222(1):151–157. [PubMed] [Google Scholar]
- Perlmann G. E. EFFECT OF SOLVENTS AND OF TEMPERATURE ON THE OPTICAL ROTATORY PROPERTIES OF PEPSIN. Proc Natl Acad Sci U S A. 1959 Jul;45(7):915–922. doi: 10.1073/pnas.45.7.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Philpot J. S., Small P. A. The action of nitrous acid on p-cresol and tyrosine. Biochem J. 1938 Mar;32(3):534–541. doi: 10.1042/bj0320534. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RICHARDS F. M., VITHAYATHIL P. J. The preparation of subtilisn-modified ribonuclease and the separation of the peptide and protein components. J Biol Chem. 1959 Jun;234(6):1459–1465. [PubMed] [Google Scholar]
- SANGER F., TUPPY H. The amino-acid sequence in the phenylalanyl chain of insulin. 2. The investigation of peptides from enzymic hydrolysates. Biochem J. 1951 Sep;49(4):481–490. doi: 10.1042/bj0490481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- STEINHARDT J., ZAISER E. M. Hydrogen ion equilibria in native and denatured proteins. Adv Protein Chem. 1955;10:151–226. doi: 10.1016/s0065-3233(08)60105-9. [DOI] [PubMed] [Google Scholar]
- Tiselius A., Henschen G. E., Svensson H. Electrophoresis of pepsin. Biochem J. 1938 Oct;32(10):1814–1818. doi: 10.1042/bj0321814. [DOI] [PMC free article] [PubMed] [Google Scholar]
- VAN VUNAKIS H., HERRIOTT R. M. Structural changes associated with the conversion of pepsinogen to pepsin. II. The N-terminal amino acid residues of pepsin and pepsinogen; the amino acid composition of pepsinogen. Biochim Biophys Acta. 1957 Mar;23(3):600–608. doi: 10.1016/0006-3002(57)90382-7. [DOI] [PubMed] [Google Scholar]
- VELICK S. F., HAYES J. E., Jr, HARTING J. The binding of diphosphopyridine nucleotide by glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem. 1953 Aug;203(2):527–544. [PubMed] [Google Scholar]
- VISWANATHA T., WONG R. C., LIENER I. E. The peptic activation of acetyltrypsinogen. Biochim Biophys Acta. 1958 Jul;29(1):174–179. doi: 10.1016/0006-3002(58)90158-6. [DOI] [PubMed] [Google Scholar]
- WETLAUFER D. B., EDSALL J. T., HOLLINGWORTH B. R. Ultraviolet difference spectra of tyrosine groups in proteins and amino acids. J Biol Chem. 1958 Dec;233(6):1421–1428. [PubMed] [Google Scholar]
- YASNOFF D. S., BULL H. B. Interaction of egg albumin and pepsin. J Biol Chem. 1953 Feb;200(2):619–628. [PubMed] [Google Scholar]