Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1962 Nov 1;46(2):343–353. doi: 10.1085/jgp.46.2.343

Cation Transport in Escherichia coli

III. Potassium fluxes in the steady-state

Stanley G Schultz 1, Wolfgang Epstein 1, David A Goldstein 1
PMCID: PMC2195261  PMID: 13987237

Abstract

The present study is concerned with the measurement of the unidirectional K flux in E. coli. Methods are described by means of which a fairly dense suspension of cells may be maintained in a well defined steady-state with respect to the intracellular K concentration and the pH of the medium. The kinetics of K42 exchange under these conditions are consistent with the presence of a single intracellular K compartment with a unidirectional K flux of 1 pmol/(cm2 sec.). This rate is independent of the extracellular K concentration over the range studied. The simultaneous rate of H secretion averages 16 pmols/(cm2 sec.) indicating that in the steady-state the efflux of metabolically produced H is not linked mole for mole to K movement.

Full Text

The Full Text of this article is available as a PDF (652.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLACKWOOD A. C., LEDINGHAM G. A., NEISH A. C. Dissimilation of glucose at controlled pH values by pigmented and non-pigmented strains of Escherichia coli. J Bacteriol. 1956 Oct;72(4):497–499. doi: 10.1128/jb.72.4.497-499.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. COWIE D. B., ROBERTS R. B., ROBERTS I. Z. Potassium metabolism in Escherichia coli; permeability to sodium and potassium ions. J Cell Physiol. 1949 Oct;34(2):243–257. doi: 10.1002/jcp.1030340205. [DOI] [PubMed] [Google Scholar]
  3. EDDY A. A., CARROLL T. C. N., DANBY C. J., HINSHELWOOD C. Alkali-metal ions in the metabolism of Bact. lactis aerogenes. I. Experiments on the uptake of radioactive potassium, rubidium and phosphorus. Proc R Soc Lond B Biol Sci. 1951 Jun;138(891):219–228. doi: 10.1098/rspb.1951.0017. [DOI] [PubMed] [Google Scholar]
  4. EDDY A. A., HINSHELWOOD C. The utilization of potassium by Bact. lactis aerogenes. Proc R Soc Lond B Biol Sci. 1950 Jan 10;136(885):544–562. doi: 10.1098/rspb.1950.0005. [DOI] [PubMed] [Google Scholar]
  5. FRICKE H., SCHWAN H. P., LI K., BRYSON V. A dielectric study of the low-conductance surface membrane in E. coli. Nature. 1956 Jan 21;177(4499):134–135. doi: 10.1038/177134a0. [DOI] [PubMed] [Google Scholar]
  6. ROBERTS R. B., ROBERTS I. Z., COWIE D. B. Potassium metabolism in Escherichia coli; metabolism in the presence of carbohydrates and their metabolic derivatives. J Cell Physiol. 1949 Oct;34(2):259–291. doi: 10.1002/jcp.1030340206. [DOI] [PubMed] [Google Scholar]
  7. SCHULTZ S. G., SOLOMON A. K. Cation transport in Escherichia coli. I. Intracellular Na and K concentrations and net cation movement. J Gen Physiol. 1961 Nov;45:355–369. doi: 10.1085/jgp.45.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. SCHULTZ S. G., WILSON N. L., EPSTEIN W. Cation transport in Escherichia coli. II. Intracellular chloride concentration. J Gen Physiol. 1962 Sep;46:159–166. doi: 10.1085/jgp.46.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES