Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1963 Jan 1;46(3):533–549. doi: 10.1085/jgp.46.3.533

Modes of Initiation and Propagation of Spikes in the Branching Axons of Molluscan Central Neurons

L Tauc 1, G M Hughes 1
PMCID: PMC2195274  PMID: 13993486

Abstract

A study has been made of Aplysia nerve cells, mainly in the pleural ganglia, in which the main axon divides into at least two branches in the neighbourhood of the soma. Conduction between these branches was investigated by intracellular recordings from the soma following antidromic stimulation via the nerves containing the axonal branches. It has been shown that transmission between separate branches need not involve discharge of the soma but only of the axonal region between the soma and the origin of the branches. In some cells, the spike may fail to invade the other axonal branch, whereas transmission in the opposite direction is readily achieved. Often spikes in none of the branches are transmitted to the others, unless facilitated. Indications about the geometry of the neuron in the vicinity of the soma may be obtained from the study of the relative size of the A spikes originated in different branches. These observations, together with the presence of different sizes of A spikes, produced by orthodromic stimulation, provide evidence that spikes initiated at separate axonal "trigger zones" of Aplysia neurons may be conducted selectively to the effectors or other neurons innervated by the particular branch.

Full Text

The Full Text of this article is available as a PDF (915.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARAKI T., OTANI T. Response of single motoneurons to direct stimulation in toad's spinal cord. J Neurophysiol. 1955 Sep;18(5):472–485. doi: 10.1152/jn.1955.18.5.472. [DOI] [PubMed] [Google Scholar]
  2. BULLOCK T. H., TERZUOLO C. A. Diverse forms of activity in the somata of spontaneous and integrating ganglion cells. J Physiol. 1957 Oct 30;138(3):341–364. doi: 10.1113/jphysiol.1957.sp005855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. COOMBS J. S., CURTIS D. R., ECCLES J. C. The interpretation of spike potentials of motoneurones. J Physiol. 1957 Dec 3;139(2):198–231. doi: 10.1113/jphysiol.1957.sp005887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. COOMBS J. S., ECCLES J. C., FATT P. Excitatory synaptic action in motoneurones. J Physiol. 1955 Nov 28;130(2):374–395. doi: 10.1113/jphysiol.1955.sp005413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FADIGA E., BROOKHART J. M. Monosynaptic activation of different portions of the motor neuron membrane. Am J Physiol. 1960 Apr;198:693–703. doi: 10.1152/ajplegacy.1960.198.4.693. [DOI] [PubMed] [Google Scholar]
  6. FESSARD A., TAUC L. Effets de répétition sur l'amplitude des potentiels postsynaptiques d'un soma neuronique. J Physiol (Paris) 1958 Mar;50(2):277–281. [PubMed] [Google Scholar]
  7. FRANK K., FUORTES M. G. Potentials recorded from the spinal cord with microelectrodes. J Physiol. 1955 Dec 29;130(3):625–654. doi: 10.1113/jphysiol.1955.sp005432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. FUORTES M. G., FRANK K., BECKER M. C. Steps in the production of motoneuron spikes. J Gen Physiol. 1957 May 20;40(5):735–752. doi: 10.1085/jgp.40.5.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HUGHES G. M., TAUC L. The path of the giant cell axons in Aplysia depilans. Nature. 1961 Jul 22;191:404–405. doi: 10.1038/191404a0. [DOI] [PubMed] [Google Scholar]
  10. TAUC L. Site of origin and propagation in spike in the giant neuron of Aplysia. J Gen Physiol. 1962 Jul;45:1077–1097. doi: 10.1085/jgp.45.6.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES