Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1963 May 1;46(5):1011–1027. doi: 10.1085/jgp.46.5.1011

The Effect of Ca and Antidiuretic Hormone on Na Transport across Frog Skin

II. Sites and mechanisms of action

Peter F Curran 1, Francisco C Herrera 1, William J Flanigan 1
PMCID: PMC2195298  PMID: 14024308

Abstract

A method has been developed for determining unidirectional Na fluxes across the two faces of the transporting cells in the frog skin. The method has been used to investigate the location of the sites at which Ca and anti-diuretic hormone act to alter the rate of active Na transport across the skin. The results have indicated that the primary effect of both agents is on the Na permeability of the outward facing membrane of the cells. Ca decreases and the hormone increases permeability of this barrier. Neither agent appears to have a direct effect on the active transport system itself assuming that it is located at the inner membrane of the cells. The rate of active Na transport is altered as a result of changes in the size of the Na pool in the cells which occur because of changes in the rate of Na entry through the outer membrane. Thus, the results indicate that the Na permeability of the outer membrane plays an important role in controlling the rate of net active Na transport across the skin.

Full Text

The Full Text of this article is available as a PDF (952.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CURRAN P. F., GILL J. R., Jr The effect of calcium on sodium transport by frog skin. J Gen Physiol. 1962 Mar;45:625–641. doi: 10.1085/jgp.45.4.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. ENGBAEK L., HOSHIKO T. Electrical potential gradients through frog skin. Acta Physiol Scand. 1957 Jul 1;39(4):348–355. doi: 10.1111/j.1748-1716.1957.tb01433.x. [DOI] [PubMed] [Google Scholar]
  3. FRAZIER H. S., DEMPSEY E. F., LEAF A. Movement of sodium across the mucosal surface of the isolated toad bladder and its modification by vasopressin. J Gen Physiol. 1962 Jan;45:529–543. doi: 10.1085/jgp.45.3.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. HERRERA F. C., CURRAN P. F. The effect of Ca and antidiuretic hormone on Na transport across frog skin. I. Examination of interrelationships between Ca and hormone. J Gen Physiol. 1963 May;46:999–1010. doi: 10.1085/jgp.46.5.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HOSHIKO T., USSING H. H. The kinetics of Na24 flux across amphibian skin and bladder. Acta Physiol Scand. 1960 May 25;49:74–81. doi: 10.1111/j.1748-1716.1960.tb01931.x. [DOI] [PubMed] [Google Scholar]
  6. LEAF A. Some actions of neurohypophyseal hormones on a living membrane. J Gen Physiol. 1960 May;43:175–189. doi: 10.1085/jgp.43.5.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. LEFEVRE P. G. Sugar transport in the red blood cell: structure-activity relationships in substrates and antagonists. Pharmacol Rev. 1961 Mar;13:39–70. [PubMed] [Google Scholar]
  8. MACROBBIE E. A., USSING H. H. Osmotic behaviour of the epithelial cells of frog skin. Acta Physiol Scand. 1961 Nov-Dec;53:348–365. doi: 10.1111/j.1748-1716.1961.tb02293.x. [DOI] [PubMed] [Google Scholar]
  9. SKOU J. C., ZERAHN K. Investigations on the effect of some local anaesthetics and other amines on the active transport of sodium through the isolated short-circuited frog skin. Biochim Biophys Acta. 1959 Oct;35:324–333. doi: 10.1016/0006-3002(59)90381-6. [DOI] [PubMed] [Google Scholar]
  10. SNELL F. M., LEEMAN C. P. Temperature coefficients of the sodium transport system of isolated frog skin. Biochim Biophys Acta. 1957 Aug;25(2):311–320. doi: 10.1016/0006-3002(57)90474-2. [DOI] [PubMed] [Google Scholar]
  11. USSING H. H., ZERAHN K. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand. 1951 Aug 25;23(2-3):110–127. doi: 10.1111/j.1748-1716.1951.tb00800.x. [DOI] [PubMed] [Google Scholar]
  12. WHITTEMBURY G., SUGINO N., SOLOMON A. K. Ionic permeability and electrical potential differences in Necturus kidney cells. J Gen Physiol. 1961 Mar;44:689–712. doi: 10.1085/jgp.44.4.689. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES