Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1963 May 1;46(5):929–969. doi: 10.1085/jgp.46.5.929

Spectrophotometric Studies on Intact Muscle

II. Recovery from contractile activity

Frans F Jöbsis 1
PMCID: PMC2195306  PMID: 13957780

Abstract

The kinetics of the mitochondrial respiratory chain of intact muscle and the concomitant changes of the intercellular pH were investigated. Addition of lactate and pyruvate under resting conditions produces reductions of DPN and cytochrome b, and, occasionally, of cytochrome c and flavoprotein. Succinate gives similar but smaller changes. In recently excised muscles moderate contractile activity produces a reduction of cytochrome c and oxidations of DPNH, cytochrome b, and sometimes of the flavoproteins. Tetanic contractions and larger numbers of twitches produce reductions of DPN and of cytochromes b and c. In sartorii of the tropical toad, stored for approximately 2 days at 0–3°C, contractile activity always gives rise to long lasting oxidations of DPNH and cytochrome b. Addition of pyruvate or lactate shortens these oxidation cycles with a concomitant reduction of cytochrome c. These responses to contractions agree with those of mitochondria isolated from leg muscles of the toad upon the addition of ADP. Apparently the mitochondria in resting, excised muscles are not supplied with an excess of substrate. Measurements on the intercellular pH showed that even limited activity ( < 5 twitches) initiates glycolysis. The primary control of respiration resides, nevertheless, in the ADP concentration, rather than in the levels of substrate or inorganic phosphate. The results are quantitatively consistent with the view that ATP is the primary energy donor for muscular contraction.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BIANCHI C. P., SHANES A. M. Calcium influx in skeletal muscle at rest, during activity, and during potassium contracture. J Gen Physiol. 1959 Mar 20;42(4):803–815. doi: 10.1085/jgp.42.4.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CAIN D. F., DAVIES R. E. Breakdown of adenosine triphosphate during a single contraction of working muscle. Biochem Biophys Res Commun. 1962 Aug 7;8:361–366. doi: 10.1016/0006-291x(62)90008-6. [DOI] [PubMed] [Google Scholar]
  3. CHANCE B., CONNELLY C. M. A method for the estimation of the increase in concentration of adenosine diphosphate in muscle sarcosomes following a contraction. Nature. 1957 Jun 15;179(4572):1235–1237. doi: 10.1038/1791235a0. [DOI] [PubMed] [Google Scholar]
  4. CHANCE B., HOLLUNGER G. Inhibition of electron and energy transfer in mitochondria. II. The site and the mechanism of guanidine action. J Biol Chem. 1963 Jan;238:432–438. [PubMed] [Google Scholar]
  5. CHANCE B., WILLIAMS G. R. Respiratory enzymes in oxidative phosphorylation. III. The steady state. J Biol Chem. 1955 Nov;217(1):409–427. [PubMed] [Google Scholar]
  6. COBEY F. A., HANDLER P. Apparent adenylate kinase activity in vivo. J Biol Chem. 1953 Sep;204(1):283–288. [PubMed] [Google Scholar]
  7. DAVIES R. E., CAIN D., DELLUVA A. M. The energy supply for muscle contraction. Ann N Y Acad Sci. 1959 Aug 28;81:468–476. doi: 10.1111/j.1749-6632.1959.tb49328.x. [DOI] [PubMed] [Google Scholar]
  8. FLECKENSTEIN A., JANKE J., DAVIES R. E., KREBS H. A. Chemistry of muscle contraction; contraction of muscle without fission of adenosine triphosphate or creatine phosphate. Nature. 1954 Dec 11;174(4441):1081–1083. doi: 10.1038/1741081a0. [DOI] [PubMed] [Google Scholar]
  9. Hill D. K. The time course of the oxygen consumption of stimulated frog's muscle. J Physiol. 1940 May 14;98(2):207–227. doi: 10.1113/jphysiol.1940.sp003845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LOOMIS W. F., LIPMANN F. Inhibition of phosphorylation by azide in kidney homogenate. J Biol Chem. 1949 May;179(1):503–503. [PubMed] [Google Scholar]
  11. MOMMAERTS W. F. Investigation of the presumed breakdown of adenosine-triphosphate and phosphocreatine during a single muscle twitch. Am J Physiol. 1955 Sep;182(3):585–593. doi: 10.1152/ajplegacy.1955.182.3.585. [DOI] [PubMed] [Google Scholar]
  12. MOMMAERTS W. F. Is adenosine triphosphate broken down during a single muscle twitch? Nature. 1954 Dec 11;174(4441):1083–1084. doi: 10.1038/1741083a0. [DOI] [PubMed] [Google Scholar]
  13. SERAYDARIAN K., MOMMAERTS W. F., WALLNER A., GUILLORY R. J. An estimation of the true inorganic phosphate content of frog sartorius muscle. J Biol Chem. 1961 Jul;236:2071–2075. [PubMed] [Google Scholar]
  14. SERAYDARIAN K., MOMMAERTS W. F., WALLNER A. The amount and compartmentalization of adenosine diphosphate in muscle. Biochim Biophys Acta. 1962 Dec 17;65:443–460. doi: 10.1016/0006-3002(62)90447-x. [DOI] [PubMed] [Google Scholar]
  15. SLATER E. C., CLELAND K. W. The effect of calcium on the respiratory and phosphorylative activities of heart-muscle sarcosomes. Biochem J. 1953 Nov;55(4):566–590. doi: 10.1042/bj0550566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. SMILLIE L. B., MANERY J. F. Effect of external potassium concentrations, insulin and lactate on frog muscle potassium and respiratory rate. Am J Physiol. 1960 Jan;198:67–77. doi: 10.1152/ajplegacy.1960.198.1.67. [DOI] [PubMed] [Google Scholar]
  17. WAJZER J., NEKHOROCHEFF J., DONDON J. Desamination des nucléotides adényliques pendant la contraction musculaire. C R Hebd Seances Acad Sci. 1958 Jun 30;246(26):3694–3696. [PubMed] [Google Scholar]
  18. WAJZER J., NEKHOROCHEFF J. Désamination et réamination des nucléotides puriques libres dans le muscle isolé de grenouille, étudiées par l'analyse enzymatique. Arch Sci Physiol (Paris) 1952;6(3):233–246. [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES