Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1963 Jul 1;46(6):1123–1140. doi: 10.1085/jgp.46.6.1123

Some Electrical Properties of a Nuclear Membrane Examined with a Microelectrode

Werner R Loewenstein 1,2, Yoshinobu Kanno 1,2
PMCID: PMC2195317  PMID: 14042995

Abstract

Electrical potential and resistance were measured with microelectrodes in in situ and isolated nuclei of gland cells of Drosophila flavorepleta. The nucleus-cytoplasm boundary was found to be rather impermeable to ion diffusion. It presents a resistance of the order of 1 Ω cm2 and sustains a "resting" potential, the nucleoplasm being about 15 mv negative with respect to the cytoplasm. Both the resistance and potential appear to be associated with the nuclear membrane: the potential declines to zero and the resistance to a fraction of its original value, when the membrane is perforated experimentally.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADRIAN R. H. The effect of internal and external potassium concentration on the membrane potential of frog muscle. J Physiol. 1956 Sep 27;133(3):631–658. doi: 10.1113/jphysiol.1956.sp005615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. COLE K. S. Some physical aspects of bioelectric phenomena. Proc Natl Acad Sci U S A. 1949 Oct;35(10):558–566. doi: 10.1073/pnas.35.10.558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. FATT P., KATZ B. An analysis of the end-plate potential recorded with an intracellular electrode. J Physiol. 1951 Nov 28;115(3):320–370. doi: 10.1113/jphysiol.1951.sp004675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. GALL J. G. Observations on the nuclear membrane with the electron microscope. Exp Cell Res. 1954 Aug;7(1):197–200. doi: 10.1016/0014-4827(54)90054-3. [DOI] [PubMed] [Google Scholar]
  5. GAY H. Chromosome-nuclear membrane-cytoplasmic interrelations in Drosophila. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):407–414. [PMC free article] [PubMed] [Google Scholar]
  6. KANNO Y., LOEWENSTEIN W. R. A STUDY OF THE NUCLEUS AND CELL MEMBRANES OF OOCYTES WITH AN INTRA-CELLULAR ELECTRODE. Exp Cell Res. 1963 Jun;31:149–166. doi: 10.1016/0014-4827(63)90164-2. [DOI] [PubMed] [Google Scholar]
  7. LOEWENSTEIN W. R., KANNO Y. Some electrical properties of the membrane of a cell nucleus. Nature. 1962 Aug 4;195:462–464. doi: 10.1038/195462a0. [DOI] [PubMed] [Google Scholar]
  8. LOEWENSTEIN W. R., KANNO Y. The electrical conductance and potential across the membrane of some cell nuclei. J Cell Biol. 1963 Feb;16:421–425. doi: 10.1083/jcb.16.2.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. PALAY S. L., PALADE G. E. The fine structure of neurons. J Biophys Biochem Cytol. 1955 Jan;1(1):69–88. doi: 10.1083/jcb.1.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. PAPPAS G. D. The fine structure of the nuclear envelope of Amoeba proteus. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):431–434. doi: 10.1083/jcb.2.4.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. ROBERTSON J. D. The ultrastructure of cell membranes and their derivatives. Biochem Soc Symp. 1959;16:3–43. [PubMed] [Google Scholar]
  12. WATSON M. L. Further observations on the nuclear envelope of the animal cell. J Biophys Biochem Cytol. 1959 Oct;6:147–156. doi: 10.1083/jcb.6.2.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. WATSON M. L. The nuclear envelope; its structure and relation to cytoplasmic membranes. J Biophys Biochem Cytol. 1955 May 25;1(3):257–270. doi: 10.1083/jcb.1.3.257. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES