Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1963 Jul 1;46(6):1303–1315. doi: 10.1085/jgp.46.6.1303

Electrolyte Metabolism in HeLa Cells

Margaret Wickson-ginzburg 1, A K Solomon 1
PMCID: PMC2195320  PMID: 14043004

Abstract

Methods have been developed to study cellular Na, K, and Cl concentrations in HeLa cells. Cell [Na] and [K] are functions of the age of the culture. As the culture grows [K], expressed in mmols/liter cell H2O, rises from an initial value of 121 to a peak of 206 at about 4 days, and thereafter falls until it has almost returned to the initial value by the 9th day. [Na] falls as [K] rises, but there is no fixed relationship between the cellular concentrations of the two cations. There is, however, a correlation between generation time and cellular [K]. Measurements of net K uptake and net Na extrusion were carried out during 1 hour incubation at 37°C of low K cells. Both net K uptake and net Na extrusion took place against chemical concentration gradients, so that at least one transport system must be active; if the Cl distribution is passive both net K uptake and net Na extrusion are active. Studies with inhibitors of respiration and glycolysis lead to the conclusion that respiration is not required for these net transports, which appear to derive their energy from glycolytic sources.

Full Text

The Full Text of this article is available as a PDF (623.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. HOLMBERG B. On the permeability to lissamine green and other dyes in the course of cell injury and cell death. Exp Cell Res. 1961 Jan;22:406–414. doi: 10.1016/0014-4827(61)90118-5. [DOI] [PubMed] [Google Scholar]
  2. SALZMAN N. P. Systematic fluctuations in the cellular protein, RNA and DNA during growth of mammalian cell cultures. Biochim Biophys Acta. 1959 Jan;31(1):158–163. doi: 10.1016/0006-3002(59)90451-2. [DOI] [PubMed] [Google Scholar]
  3. SANFORD K. K., EARLE W. R., EVANS V. J., WALTZ H. K., SHANNON J. E. The measurement of proliferation in tissue cultures by enumeration of cell nuclei. J Natl Cancer Inst. 1951 Feb;11(4):773–795. [PubMed] [Google Scholar]
  4. SCHULTZ S. G., SOLOMON A. K. Cation transport in Escherichia coli. I. Intracellular Na and K concentrations and net cation movement. J Gen Physiol. 1961 Nov;45:355–369. doi: 10.1085/jgp.45.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. WU R. Regulatory mechanisms in carbohydrate metabolism. V. Limiting factors of glycolysis in HeLa cells. J Biol Chem. 1959 Nov;234:2806–2810. [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES