Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1963 Sep 1;47(1):53–70. doi: 10.1085/jgp.47.1.53

Post-Tetanic Repetitive Activity in the Cat Soleus Nerve

Its origin, course, and mechanism of generation

Frank G Standaert 1
PMCID: PMC2195323  PMID: 14060448

Abstract

Subsequent to conditioning by a high frequency stimulus axons of the cat soleus nerve respond to single stimuli with brief trains of repetitive action potentials. This phenomenon, post-tetanic repetitive activity (PTR), was studied in individual axons and single motor units of an in situ cat soleus nerve-muscle preparation. The occurrence, intensity, and duration of PTR are principally dependent on the frequency and duration of the conditioning tetanus. PTR occurs synchronously in the axon and muscles of single motor units. An analysis of the temporal relationships of the repetitive nerve and muscle potentials showed that PTR is generated in the motor nerve terminal. It is postulated that PTR is produced by a generator potential which is developed in the post-tetanic period between the unmyelinated nerve terminal and the last node of Ranvier.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADELMAN W. J., Jr The excitable properties of three types of motor axons. J Gen Physiol. 1956 Nov 20;40(2):251–262. doi: 10.1085/jgp.40.2.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BROWN M. C., MATTHEWS P. B. The effect on a muscle twitch of the back-response of its motor nerve fibres. J Physiol. 1960 Feb;150:332–346. doi: 10.1113/jphysiol.1960.sp006391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barron D. H., Matthews B. H. The interpretation of potential changes in the spinal cord. J Physiol. 1938 Apr 14;92(3):276–321. doi: 10.1113/jphysiol.1938.sp003603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DOUGLAS W. W., RITCHIE J. M. Mammalian nonmyelinated nerve fibers. Physiol Rev. 1962 Apr;42:297–334. doi: 10.1152/physrev.1962.42.2.297. [DOI] [PubMed] [Google Scholar]
  5. ECCLES J. C., ECCLES R. M., LUNDBERG A. The action potentials of the alpha motoneurones supplying fast and slow muscles. J Physiol. 1958 Jul 14;142(2):275–291. doi: 10.1113/jphysiol.1958.sp006015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. EYZAGUIRRE C., KUFFLER S. W. Processes of excitation in the dendrites and in the soma of single isolated sensory nerve cells of the lobster and crayfish. J Gen Physiol. 1955 Sep 20;39(1):87–119. doi: 10.1085/jgp.39.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eccles J. C., O'connor W. J. Responses which nerve impulses evoke in mammalian striated muscles. J Physiol. 1939 Nov 14;97(1):44–102. doi: 10.1113/jphysiol.1939.sp003791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. FURSHPAN E. J., FURUKAWA T. Intracellular and extracellular responses of the several regions of the Mauthner cell of the goldfish. J Neurophysiol. 1962 Nov;25:732–771. doi: 10.1152/jn.1962.25.6.732. [DOI] [PubMed] [Google Scholar]
  9. GASSER H. S. Unmedullated fibers originating in dorsal root ganglia. J Gen Physiol. 1950 Jul 20;33(6):651–690. doi: 10.1085/jgp.33.6.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. GREENGARD P., STRAUB R. W. After-potentials in mammalian non-myelinated nerve fibres. J Physiol. 1958 Dec 30;144(3):442–462. doi: 10.1113/jphysiol.1958.sp006112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HUBBARD J. I., SCHMIDT R. F. Repetitive activation of motor nerve endings. Nature. 1962 Oct 27;196:378–379. doi: 10.1038/196378a0. [DOI] [PubMed] [Google Scholar]
  12. HUGHES J. R. Post-tetanic potentiation. Physiol Rev. 1958 Jan;38(1):91–113. doi: 10.1152/physrev.1958.38.1.91. [DOI] [PubMed] [Google Scholar]
  13. KANDEL E. R., SPENCER W. A. Electrophysiology of hippocampal neurons. II. After-potentials and repetitive firing. J Neurophysiol. 1961 May;24:243–259. doi: 10.1152/jn.1961.24.3.243. [DOI] [PubMed] [Google Scholar]
  14. KATZ B. Depolarization of sensory terminals and the initiation of impulses in the muscle spindle. J Physiol. 1950 Oct 16;111(3-4):261–282. doi: 10.1113/jphysiol.1950.sp004479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Katz B. Multiple response to constant current in frog's medullated nerve. J Physiol. 1936 Nov 6;88(2):239–255. doi: 10.1113/jphysiol.1936.sp003435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. RIKER W. F., Jr, ROBERTS J., STANDAERT F. G., FUJIMORI H. The motor nerve terminal as the primary focus for drug-in-duced facilitation of neuromuscular transmission. J Pharmacol Exp Ther. 1957 Nov;121(3):286–312. [PubMed] [Google Scholar]
  17. RIKER W. F., Jr, WERNER G., ROBERTS J., KUPERMAN A. Pharmacologic evidence for the existence of a presynaptic event in neuromuscular transmission. J Pharmacol Exp Ther. 1959 Feb;125(2):150–158. [PubMed] [Google Scholar]
  18. RITCHIE J. M., STRAUB R. W. The hyperpolarization which follows activity in mammalian non-medullated fibres. J Physiol. 1957 Apr 3;136(1):80–97. doi: 10.1113/jphysiol.1957.sp005744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. RUSHTON W. A. H. A theory of the effects of fibre size in medullated nerve. J Physiol. 1951 Sep;115(1):101–122. doi: 10.1113/jphysiol.1951.sp004655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. SHANES A. M. Electrochemical aspects of physiological and pharmacological action in excitable cells. I. The resting cell and its alteration by extrinsic factors. Pharmacol Rev. 1958 Mar;10(1):59–164. [PubMed] [Google Scholar]
  21. TIEGS O. W. Innervation of voluntary muscle. Physiol Rev. 1953 Jan;33(1):90–144. doi: 10.1152/physrev.1953.33.1.90. [DOI] [PubMed] [Google Scholar]
  22. WALL P. D., JOHNSON A. R. Changes associated with post-tetanic potentiation of a monosynaptic reflex. J Neurophysiol. 1958 Mar;21(2):148–158. doi: 10.1152/jn.1958.21.2.148. [DOI] [PubMed] [Google Scholar]
  23. WALL P. D. Repetitive discharge of neurons. J Neurophysiol. 1959 May;22(3):305–320. doi: 10.1152/jn.1959.22.3.305. [DOI] [PubMed] [Google Scholar]
  24. WERNER G. Antidromic activity in motor nerves and its relation to a generator event in nerve terminals. J Neurophysiol. 1961 Jul;24:401–413. doi: 10.1152/jn.1961.24.4.401. [DOI] [PubMed] [Google Scholar]
  25. WERNER G. Neuromuscular facilitation and antidromic discharges in motor nerves: their relation to activity in motor nerve terminals. J Neurophysiol. 1960 Mar;23:171–187. doi: 10.1152/jn.1960.23.2.171. [DOI] [PubMed] [Google Scholar]
  26. Wolbarsht M. L., Macnichol E. F., Jr, Wagner H. G. Glass Insulated Platinum Microelectrode. Science. 1960 Nov 4;132(3436):1309–1310. doi: 10.1126/science.132.3436.1309. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES