Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1963 Sep 1;47(1):151–172. doi: 10.1085/jgp.47.1.151

Inhibition of Caffeine Rigor and Radiocalcium Movements by Local Anesthetics in Frog Sartorius Muscle

Maurice B Feinstein 1
PMCID: PMC2195324  PMID: 14060443

Abstract

Local anesthetics have been found to act as competitive inhibitors of caffeine in frog sartorius muscle. They block caffeine-induced rigor and the attendant increase in Ca45 influx and efflux. Increased net uptake of sodium, loss of potassium, and concurrent increase in oxygen consumption are all effectively blocked by procaine. Evidence is presented that the inhibitory effect of the local anesthetics cannot be explained by the formation of molecular complexes with caffeine. Increased efflux of Ca45 produced by changing from zero calcium Ringer's to 0.1 mM or 1 mM calcium Ringer's is inhibited by procaine and tetracaine. EDTA-stimulated calcium efflux is not affected by either local anesthetic. Caffeine rigor develops in frog muscle depolarized with KCl or rendered electrically inexcitable by sodium lack. Both the rigor and the increased calcium fluxes are inhibited by local anesthetics in depolarized muscle.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADELMAN W. J., Jr, DALTON J. C. Interactions of calcium with sodium and potassium in membrane potentials of the lobster giant axon. J Gen Physiol. 1960 Jan;43:609–619. doi: 10.1085/jgp.43.3.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BIANCHI C. P., SHANES A. M. Calcium influx in skeletal muscle at rest, during activity, and during potassium contracture. J Gen Physiol. 1959 Mar 20;42(4):803–815. doi: 10.1085/jgp.42.4.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CONDOURIS G. A. A study on the mechanism of action of cocaine on amphibian peripheral nerve. J Pharmacol Exp Ther. 1961 Feb;131:243–249. [PubMed] [Google Scholar]
  4. COSMOS E., HARRIS E. J. In vitro studies of the gain and exchange of calcium in frog skeletal muscle. J Gen Physiol. 1961 Jul;44:1121–1130. doi: 10.1085/jgp.44.6.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. CRESCITELLI F. Modification in responses to sodium of nerve fibers treated with drugs. Am J Physiol. 1952 Jun;169(3):638–648. doi: 10.1152/ajplegacy.1952.169.3.638. [DOI] [PubMed] [Google Scholar]
  6. ECKERT T. [On pi electron donor-acceptor complex of procaine hydrochloride with alkyl xanthines: research on the problem of the acceptor center]. Arch Pharm. 1962 Mar;295/67:233–240. doi: 10.1002/ardp.19622950313. [DOI] [PubMed] [Google Scholar]
  7. FRANKENHAEUSER B., HODGKIN A. L. The action of calcium on the electrical properties of squid axons. J Physiol. 1957 Jul 11;137(2):218–244. doi: 10.1113/jphysiol.1957.sp005808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. FURCHGOTT R. F. The pharmacology of vascular smooth muscle. Pharmacol Rev. 1955 Jun;7(2):183–265. [PubMed] [Google Scholar]
  9. GADDUM J. H. Theories of drug antagonism. Pharmacol Rev. 1957 Jun;9(2):211–218. [PubMed] [Google Scholar]
  10. GADDUM J. H. Theories of drug antagonism. Pharmacol Rev. 1957 Jun;9(2):211–218. [PubMed] [Google Scholar]
  11. HODGKIN A. L., KEYNES R. D. Movements of labelled calcium in squid giant axons. J Physiol. 1957 Sep 30;138(2):253–281. doi: 10.1113/jphysiol.1957.sp005850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. JENERICK H. The control of membrane ionic currents by the membrane potential of muscle. J Gen Physiol. 1959 May 20;42(5):923–930. doi: 10.1085/jgp.42.5.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. KOKETSU K., MIYAMOTO S. Release of calcium-45 from frog nerves during electrical activity. Nature. 1961 Feb 4;189:402–403. doi: 10.1038/189402a0. [DOI] [PubMed] [Google Scholar]
  14. KOKETSU K., MIYAMOTO S. Significance of membrane calcium in calcium-free and potassium-rich media. Nature. 1961 Feb 4;189:403–404. doi: 10.1038/189403a0. [DOI] [PubMed] [Google Scholar]
  15. LACHMAN L., RAVIN L. J., HIGUCHI T. Inhibition of hydrolysis of esters in solution by formation of complexes. II. Stabilization of procaine with caffeine. J Am Pharm Assoc Am Pharm Assoc. 1956 May;45(5):290–295. doi: 10.1002/jps.3030450506. [DOI] [PubMed] [Google Scholar]
  16. MULLINS L. J. An analysis of conductance changes in squid axon. J Gen Physiol. 1959 May 20;42(5):1013–1035. doi: 10.1085/jgp.42.5.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. NAGAI T., UCHIDA K. Effect of some contracture-producing agents on glycerol-extracted muscle fiber relaxed with relaxing factor. Biochim Biophys Acta. 1960 Nov 4;44:334–340. doi: 10.1016/0006-3002(60)91569-9. [DOI] [PubMed] [Google Scholar]
  18. NIEDERGERKE R., HARRIS E. J. Accumulation of calcium (or strontium) under conditions of increasing contractility. Nature. 1957 May 25;179(4569):1068–1069. doi: 10.1038/1791068a0. [DOI] [PubMed] [Google Scholar]
  19. NIEDERGERKE R., LUTTGAU H. C. Antagonism between calcium and sodium ions. Nature. 1957 May 25;179(4569):1066–1067. doi: 10.1038/1791066a0. [DOI] [PubMed] [Google Scholar]
  20. NOVOTNY I., VYSKOCIL F., VYKLICKY L., BERANEK R. Potassium and caffeine induced increase of oxygen consumption in frog muscle and its inhibition by drugs. Physiol Bohemoslov. 1962;11:277–284. [PubMed] [Google Scholar]
  21. ROBERTSON P. A. Calcium and contractility in depolarized smooth muscle. Nature. 1960 Apr 23;186:316–317. doi: 10.1038/186316a0. [DOI] [PubMed] [Google Scholar]
  22. SANDOW A. Excitation-contraction coupling in muscular response. Yale J Biol Med. 1952 Dec;25(3):176–201. [PMC free article] [PubMed] [Google Scholar]
  23. SHANES A. M., BERMAN M. D. Kinetics of ion movement in the squid giant axon. J Gen Physiol. 1955 Nov 20;39(2):279–300. doi: 10.1085/jgp.39.2.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. SHANES A. M. Distinction between effects on metabolic transport and passive transfer of ions. Science. 1956 Oct 19;124(3225):724–725. doi: 10.1126/science.124.3225.724. [DOI] [PubMed] [Google Scholar]
  25. SHANES A. M. Drug and ion effects in frog muscle. J Gen Physiol. 1950 Jul 20;33(6):729–744. doi: 10.1085/jgp.33.6.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. SHANES A. M. Electrochemical aspects of physiological and pharmacological action in excitable cells. I. The resting cell and its alteration by extrinsic factors. Pharmacol Rev. 1958 Mar;10(1):59–164. [PubMed] [Google Scholar]
  27. SHANES A. M. Electrochemical aspects of physiological and pharmacological action in excitable cells. II. The action potential and excitation. Pharmacol Rev. 1958 Jun;10(2):165–273. [PubMed] [Google Scholar]
  28. SHANES A. M., FREYGANG W. H., GRUNDFEST H., AMATNIEK E. Anesthetic and calcium action in the voltage-clamped squid giant axon. J Gen Physiol. 1959 Mar 20;42(4):793–802. doi: 10.1085/jgp.42.4.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. SHANES A. M., GERSHFELD N. L. Interactions of veratrum alkaloids, procaine, and calcium with monolayers of stearic acid and their implications for pharmacological action. J Gen Physiol. 1960 Nov;44:345–363. doi: 10.1085/jgp.44.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. STRAUB R. Der Einfluss von Lokalanesthetika auf ionenbedingte Ruhepotentioländerungen von markhaltigen Nervenfasern des Frosches. Arch Int Pharmacodyn Ther. 1956 Sep 1;107(3-4):414–430. [PubMed] [Google Scholar]
  31. TASAKI I., TEORELL T., SPYROPOULOS C. S. Movement of radioactive tracers across squid axon membrane. Am J Physiol. 1961 Jan;200:11–22. doi: 10.1152/ajplegacy.1961.200.1.11. [DOI] [PubMed] [Google Scholar]
  32. TAYLOR R. E. Effect of procaine on electrical properties of squid axon membrane. Am J Physiol. 1959 May;196(5):1071–1078. doi: 10.1152/ajplegacy.1959.196.5.1071. [DOI] [PubMed] [Google Scholar]
  33. THESLEFF S. The effect of anesthetic agents on skeletal muscle membrane. Acta Physiol Scand. 1956 Nov 5;37(4):335–349. doi: 10.1111/j.1748-1716.1956.tb01369.x. [DOI] [PubMed] [Google Scholar]
  34. TOBIAS J. M., AGIN D. P., PAWLOWSKI R. Phospholipidcholesterol membrane model. Control of resistance by ions or current flow. J Gen Physiol. 1962 May;45:989–1001. doi: 10.1085/jgp.45.5.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. WEBER A., HERZ R. Requirement for calcium in the synaeresis of myofibrils. Biochem Biophys Res Commun. 1961 Dec 20;6:364–368. doi: 10.1016/0006-291x(61)90146-2. [DOI] [PubMed] [Google Scholar]
  36. WEBER A., WINICUR S. The role of calcium in the superprecipitation of actomyosin. J Biol Chem. 1961 Dec;236:3198–3202. [PubMed] [Google Scholar]
  37. WRIGHT E. B. Action of physostigmine (eserine) sulfate on peripheral nerve. Am J Physiol. 1956 Jan;184(1):209–219. doi: 10.1152/ajplegacy.1955.184.1.209. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES