Abstract
By means of a DC bridge circuit one microelectrode was used for simultaneously passing current and recording transmembrane potentials. In some cells, depolarization increased the frequency of discharge whereas hyperpolarization decreased the frequency; the frequency/current relation was sigmoid. In other cells, polarizing currents were without effect upon frequency. The change in action potential magnitude was in proportion to the degree of polarization. From control values of about 5 mv/sec., the slope of the pacemaker potential increased to 60 mv/sec. upon depolarization and diminished to zero upon hyperpolarization. In many cells a transient hyperpolarization was produced on the cessation of depolarizing currents. The voltage/current relationship was linear and had a slope of about 13 MΩ. With an AC bridge circuit, the cell capacitance averaged 800 pf and the time constant, 9.6 msec. Rm was estimated to be 480 Ω-cm2 and Cm, 20 µf/cm2. The magnitudes of some prepotentials were affected by polarizing currents, which suggests that the prepotentials represent postsynaptic potentials.
Full Text
The Full Text of this article is available as a PDF (1.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ARAKI T., OTANI T. Response of single motoneurons to direct stimulation in toad's spinal cord. J Neurophysiol. 1955 Sep;18(5):472–485. doi: 10.1152/jn.1955.18.5.472. [DOI] [PubMed] [Google Scholar]
- BURROWS R., LAMB J. F. Sodium and potassium fluxes in cells cultured from chick embryo heart muscle. J Physiol. 1962 Aug;162:510–531. doi: 10.1113/jphysiol.1962.sp006947. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DUDEL J., TRAUTWEIN W. Der Mechanismus der automatischen rhythmischen Impulsbildung der Herzmuskelfaser. Pflugers Arch. 1958;267(6):553–565. doi: 10.1007/BF00362959. [DOI] [PubMed] [Google Scholar]
- EDWARDS C., KUFFLER S. W., TRAUTWEIN W. Changes in membrane characteristics of heart muscle during inhibition. J Gen Physiol. 1956 Sep 20;40(1):135–145. doi: 10.1085/jgp.40.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FANGE R., PERSSON H., THESLEFF S. Electrophysiologic and pharmacological observations on trypsin-disintegrated embryonic chick hearts cultured in vitro. Acta Physiol Scand. 1956 Dec 31;38(2):173–183. doi: 10.1111/j.1748-1716.1957.tb01381.x. [DOI] [PubMed] [Google Scholar]
- FRANK K., FUORTES M. G. Stimulation of spinal motoneurones with intracellular electrodes. J Physiol. 1956 Nov 28;134(2):451–470. doi: 10.1113/jphysiol.1956.sp005657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HOSHIKO T., SPERELAKIS N. Components of the cardiac action potential. Am J Physiol. 1962 Aug;203:258–260. doi: 10.1152/ajplegacy.1962.203.2.258. [DOI] [PubMed] [Google Scholar]
- HOSHIKO T., SPERELAKIS N. Prepotentials and unidirectional propagation in myocardium. Am J Physiol. 1961 Nov;201:873–880. doi: 10.1152/ajplegacy.1961.201.5.873. [DOI] [PubMed] [Google Scholar]
- HUTTER O. F., NOBLE D. Rectifying properties of heart muscle. Nature. 1960 Nov 5;188:495–495. doi: 10.1038/188495a0. [DOI] [PubMed] [Google Scholar]
- HUXLEY A. F. Ion movements during nerve activity. Ann N Y Acad Sci. 1959 Aug 28;81:221–246. doi: 10.1111/j.1749-6632.1959.tb49311.x. [DOI] [PubMed] [Google Scholar]
- Hodgkin A. L. The local electric changes associated with repetitive action in a non-medullated axon. J Physiol. 1948 Mar 15;107(2):165–181. doi: 10.1113/jphysiol.1948.sp004260. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JOHNSON E. A., TILLE J. Evidence for independence of voltage of the membrane conductance of rabbit ventricular fibres. Nature. 1961 Nov 18;192:663–664. doi: 10.1038/192663a0. [DOI] [PubMed] [Google Scholar]
- JOHNSON E. A., TILLE J. Investigations of the electrical properties of cardiac muscle fibres with the aid of intracellular double-barrelled electrodes. J Gen Physiol. 1961 Jan;44:443–467. doi: 10.1085/jgp.44.3.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LEHMKUHL D., SPERELAKIS N. TRANSMEMBRANE POTENTIALS OF TRYPSIN-DISPERSED CHICK HEART CELLS CULTURED IN VITRO. Am J Physiol. 1963 Dec;205:1213–1220. doi: 10.1152/ajplegacy.1963.205.6.1213. [DOI] [PubMed] [Google Scholar]
- LI C. L., ENGEL K., KLATZO I. Some properties of cultured chick skeletal muscle with particular reference to fibrillation potential. J Cell Comp Physiol. 1959 Jun;53:421–444. doi: 10.1002/jcp.1030530307. [DOI] [PubMed] [Google Scholar]
- MASHIBA H. Studies on fibrillation-ordinary action potential and interaction potential. Jpn Heart J. 1961 Oct;2:487–492. doi: 10.1536/ihj.2.487. [DOI] [PubMed] [Google Scholar]
- MAZEL P., HOLLAND W. C. Acetylcholine and electrolyte metabolism in the various chambers of the frog and turtle heart. Circ Res. 1958 Nov;6(6):684–688. doi: 10.1161/01.res.6.6.684. [DOI] [PubMed] [Google Scholar]
- NAGAI T., PROSSER C. L. Electrical parameters of smooth muscle cells. Am J Physiol. 1963 May;204:915–924. doi: 10.1152/ajplegacy.1963.204.5.915. [DOI] [PubMed] [Google Scholar]
- NOBLE D. A modification of the Hodgkin--Huxley equations applicable to Purkinje fibre action and pace-maker potentials. J Physiol. 1962 Feb;160:317–352. doi: 10.1113/jphysiol.1962.sp006849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NOBLE D. The voltage dependence of the cardiac membrane conductance. Biophys J. 1962 Sep;2:381–393. doi: 10.1016/s0006-3495(62)86862-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PUCK T. T., CIECIURA S. J., ROBINSON A. Genetics of somatic mammalian cells. III. Long-term cultivation of euploid cells from human and animal subjects. J Exp Med. 1958 Dec 1;108(6):945–956. doi: 10.1084/jem.108.6.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SPERELAKIS N. Additional evidence for high-resistance intercalated discs in the myocardium. Circ Res. 1963 Jun;12:676–683. doi: 10.1161/01.res.12.6.676. [DOI] [PubMed] [Google Scholar]
- SPERELAKIS N., HOSHIKO T. Electrical impedance of cardiac muscle. Circ Res. 1961 Nov;9:1280–1283. doi: 10.1161/01.res.9.6.1280. [DOI] [PubMed] [Google Scholar]
- SPERELAKIS N., HOSHIKO T., KELLER R. F., Jr, BERNE R. M. Intracellular and external recording from frog ventricular fibers during hypertonic perfusion. Am J Physiol. 1960 Jan;198:135–140. doi: 10.1152/ajplegacy.1960.198.1.135. [DOI] [PubMed] [Google Scholar]
- TAMAI T., ABE Y., GOTO M. Interaction between adjoining fibers in the fibrillating skeletal muscle of the frog. Jpn J Physiol. 1961 Jun 15;11:346–355. doi: 10.2170/jjphysiol.11.346. [DOI] [PubMed] [Google Scholar]
- TRAUTWEIN W., KASSEBAUM D. G. On the mechanism of spontaneous impulse generation in the pacemaker of the heart. J Gen Physiol. 1961 Nov;45:317–330. doi: 10.1085/jgp.45.2.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- USHIYAMA J., BROOKS C. M. Intracellular stimulation and recording from single cardiac cells. Am J Cardiol. 1962 Nov;10:688–694. doi: 10.1016/0002-9149(62)90246-1. [DOI] [PubMed] [Google Scholar]
- WEIDMANN S. The electrical constants of Purkinje fibres. J Physiol. 1952 Nov;118(3):348–360. doi: 10.1113/jphysiol.1952.sp004799. [DOI] [PMC free article] [PubMed] [Google Scholar]