Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1964 Jan 1;47(3):567–584. doi: 10.1085/jgp.47.3.567

Ion Transport in Isolated Rabbit Ileum

I. Short-circuit current and Na fluxes

Stanley G Schultz 1, Ralph Zalusky 1
PMCID: PMC2195387  PMID: 14100970

Abstract

The transmural potential difference, short-circuit current, and Na fluxes have been investigated in an in vitro preparation of isolated rabbit ileum. When the tissue is perfused with a physiological buffer, the serosal surface is electrically positive with respect to the mucosal surface and the initial potential difference in the presence of glucose averages 9 mv. Unidirectional and net Na fluxes have been determined under a variety of conditions, and in each instance, most if not all of the simultaneously measured short-circuit current could be attributed to the active transport of Na from mucosa to serosa. Active Na transport is dependent upon the presence of intact aerobic metabolic pathways and is inhibited by low concentrations of ouabain in the serosal medium. A method is described for determining whether a unidirectional ionic flux is the result of passive diffusion alone, in the presence of active transport of that ion in the opposite direction. Using this method we have demonstrated that the serosa-to-mucosa flux of Na may be attributed to passive diffusion with no evidence for the presence of carrier-mediated exchange diffusion or the influence of solvent-drag.

Full Text

The Full Text of this article is available as a PDF (1,018.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CLARKSON T. W., CROSS A. C., TOOLE S. R. Electrical potentials across isolated small intestine of the rat. Am J Physiol. 1961 Jun;200:1233–1235. doi: 10.1152/ajplegacy.1961.200.6.1233. [DOI] [PubMed] [Google Scholar]
  2. CLARKSON T. W., ROTHSTEIN A., CROSS A. Transport of monovalent anions by isolated small intestine of the rat. Am J Physiol. 1961 Apr;200:781–788. doi: 10.1152/ajplegacy.1961.200.4.781. [DOI] [PubMed] [Google Scholar]
  3. CLARKSON T. W., ROTHSTEIN A. Transport of monovalent cations by the isolated small intestine of the rat. Am J Physiol. 1960 Nov;199:898–906. doi: 10.1152/ajplegacy.1960.199.5.898. [DOI] [PubMed] [Google Scholar]
  4. COOPERSTEIN I. L., HOGBEN C. A. Ionic transfer across the isolated frog large intestine. J Gen Physiol. 1959 Jan 20;42(3):461–473. doi: 10.1085/jgp.42.3.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. COTLOVE E. Mechanism and extent of distribution of inulin and sucrose in chloride space of tissues. Am J Physiol. 1954 Mar;176(3):396–410. doi: 10.1152/ajplegacy.1954.176.3.396. [DOI] [PubMed] [Google Scholar]
  6. CURRAN P. F. Na, Cl, and water transport by rat ileum in vitro. J Gen Physiol. 1960 Jul;43:1137–1148. doi: 10.1085/jgp.43.6.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. CURRAN P. F., SCHWARTZ G. F. Na, Cl, and water transport by rat colon. J Gen Physiol. 1960 Jan;43:555–571. doi: 10.1085/jgp.43.3.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. CURRAN P. F., SOLOMON A. K. Ion and water fluxes in the ileum of rats. J Gen Physiol. 1957 Sep 20;41(1):143–168. doi: 10.1085/jgp.41.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DIAMOND J. M. The mechanism of solute transport by the gall-bladder. J Physiol. 1962 May;161:474–502. doi: 10.1113/jphysiol.1962.sp006899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. FRAZIER H. S., DEMPSEY E. F., LEAF A. Movement of sodium across the mucosal surface of the isolated toad bladder and its modification by vasopressin. J Gen Physiol. 1962 Jan;45:529–543. doi: 10.1085/jgp.45.3.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. GREEN K., SESHADRI B., MATTY A. J. Independence of transfer of solute and solvent across the rat ileum. Nature. 1962 Dec 29;196:1322–1323. doi: 10.1038/1961322a0. [DOI] [PubMed] [Google Scholar]
  12. HAYS R. M., LEAF A. The problem of clinical vasopressin resistance: in vitro studies. Ann Intern Med. 1961 Apr;54:700–709. doi: 10.7326/0003-4819-54-4-700. [DOI] [PubMed] [Google Scholar]
  13. HOSHIKO T., USSING H. H. The kinetics of Na24 flux across amphibian skin and bladder. Acta Physiol Scand. 1960 May 25;49:74–81. doi: 10.1111/j.1748-1716.1960.tb01931.x. [DOI] [PubMed] [Google Scholar]
  14. KIRSCHNER L. B. Permeability of frog skin to choline. Science. 1960 Jul 8;132(3419):85–86. doi: 10.1126/science.132.3419.85. [DOI] [PubMed] [Google Scholar]
  15. SCHULTZ S. G., ZALUSKY R. The interaction between active sodium transport and active sugar transport in the isolated rabbit ileum. Biochim Biophys Acta. 1963 May 14;71:503–505. doi: 10.1016/0006-3002(63)91121-1. [DOI] [PubMed] [Google Scholar]
  16. SMYTH D. H., TAYLOR C. B. Transfer of water and solutes by an in vitro intestinal preparation. J Physiol. 1957 May 23;136(3):632–648. doi: 10.1113/jphysiol.1957.sp005788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. USSING H. H., ZERAHN K. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand. 1951 Aug 25;23(2-3):110–127. doi: 10.1111/j.1748-1716.1951.tb00800.x. [DOI] [PubMed] [Google Scholar]
  18. WHITTEMBURY G., SUGINO N., SOLOMON A. K. Ionic permeability and electrical potential differences in Necturus kidney cells. J Gen Physiol. 1961 Mar;44:689–712. doi: 10.1085/jgp.44.4.689. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES