Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1964 Sep 1;48(1):79–94. doi: 10.1085/jgp.48.1.79

Osmotic Properties of Human Red Cells

David Savitz 1, Victor W Sidel 1, A K Solomon 1
PMCID: PMC2195405  PMID: 14212152

Abstract

The hematocrit method as a technique for determining red cell volume under anisotonic conditions has been reexamined and has been shown, with appropriate corrections for trapped plasma, to provide a true measure of cell volume. Cell volume changes in response to equilibration in anisotonic media were found to be much less than those predicted for an ideal osmometer; this anomalous behavior cannot be explained by solute leakage or by the changing osmotic coefficient of hemoglobin, but is quantitatively accounted for by the hypothesis that 20 per cent of intracellular water is bound to hemoglobin and is unavailable for participation in osmotic shifts.

Full Text

The Full Text of this article is available as a PDF (912.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. DICK D. A., LOWENSTEIN L. M. Osmotic equilibria in human erythrocytes studied by immersion refractometry. Proc R Soc Lond B Biol Sci. 1958 Feb 18;148(931):241–256. doi: 10.1098/rspb.1958.0016. [DOI] [PubMed] [Google Scholar]
  2. DICK D. A. Osmotic properties of living cells. Int Rev Cytol. 1959;8:387–448. doi: 10.1016/s0074-7696(08)62736-9. [DOI] [PubMed] [Google Scholar]
  3. DRABKIN D. L. Spectrophotometric studies. XV. Hydration of macro sized crystals of human hemoglobin, and osmotic concentrations in red cells. J Biol Chem. 1950 Jul;185(1):231–245. [PubMed] [Google Scholar]
  4. GOLD G. L., SOLOMON A. K. The transport of sodium into human erythrocytes in vivo. J Gen Physiol. 1955 Jan 20;38(3):389–404. doi: 10.1085/jgp.38.3.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HENDRY E. B. The osmotic properties of the normal human erythrocyte. Edinb Med J. 1954 Jan;61(1):7–24. [PMC free article] [PubMed] [Google Scholar]
  6. HSU S. S., KNUDSEN J. P., YUDOWITCH K. L. Hemoglobin spacing in erythrocytes. Arch Biochem Biophys. 1953 Aug;45(2):411–422. doi: 10.1016/s0003-9861(53)80017-2. [DOI] [PubMed] [Google Scholar]
  7. LEFEVRE P. G. THE OSMOTICALLY FUNCTIONAL WATER CONTENT OF THE HUMAN ERYTHROCYTE. J Gen Physiol. 1964 Jan;47:585–603. doi: 10.1085/jgp.47.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. MCCONAGHEY P. D., MAIZELS M. The osmotic coefficients of haemoglobin in red cells under varying conditions. J Physiol. 1961 Jan;155:28–45. doi: 10.1113/jphysiol.1961.sp006611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. PERUTZ M. F., MITCHISON J. M. State of haemoglobin in sickle-cell anaemia. Nature. 1950 Oct 21;166(4225):677–679. doi: 10.1038/166677a0. [DOI] [PubMed] [Google Scholar]
  10. SCHULTZ S. G., SOLOMON A. K. Cation transport in Escherichia coli. I. Intracellular Na and K concentrations and net cation movement. J Gen Physiol. 1961 Nov;45:355–369. doi: 10.1085/jgp.45.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. WILLIAMS T. F., FORDHAM C. C., 3rd, HOLLANDER W., Jr, WELT L. G. A study of the osmotic behavior of the human erythrocyte. J Clin Invest. 1959 Sep;38:1587–1598. doi: 10.1172/JCI103937. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES