Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1964 Sep 1;48(1):129–140. doi: 10.1085/jgp.48.1.129

Influence of Some Ions on the Membrane Potential of Ascaris Muscle

J Del Gastillo 1, W C De Mello 1, T Morales 1
PMCID: PMC2195406  PMID: 14212144

Abstract

The influence of several ions on the membrane potential of the somatic muscle of Ascaris has been investigated by changing their concentration in the surrounding solution. When [K]o is increased at the expense of [Na]o leaving [Cl]o constant, the membrane potential is first seen to increase. [K]o higher than 45 mM reduces the membrane potential with a slope of 23 mv for a tenfold change in [K]o. However, when [K]o is increased keeping [Na]o and [Cl]o low and constant, the line relating the membrane potential with log [K]o has a slope of almost 50 mv. If [Cl]o is reduced in the absence of external Na, after the [K]o is increased to 45 mM, the membrane potential decreases with a slope of 59 mv per tenfold change in [Cl]o in close agreement with the Nernst equation. If Cl- is replaced by SO4 2-, a depolarization is produced, while chloride replacement by NO3 -, Br-, and I- results in a hyperpolarization of the membrane. Removal of the external Na+ ions increases the average membrane potential by 17 mv.

Full Text

The Full Text of this article is available as a PDF (685.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BULBRING E., KURIYAMA H. Effects of changes in ionic environment on the action of acetylcholine and adrenaline on the smooth muscle cells of guinea-pig taenia coli. J Physiol. 1963 Apr;166:59–74. doi: 10.1113/jphysiol.1963.sp007090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BURNSTOCK G., STRAUB R. W. A method for studying the effects of ions and drugs on the resting and action potentials in smooth muscle with external electrodes. J Physiol. 1958 Jan 23;140(1):156–167. doi: 10.1113/jphysiol.1958.sp005924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DEBELL J. T., DELCASTILLO J., SANCHEZ V. ELECTROPHYSIOLOGY OF THE SOMATIC MUSCLE CELLS OF ASCARIS LUMBRICOIDES. J Cell Physiol. 1963 Oct;62:159–177. doi: 10.1159/000007808. [DOI] [PubMed] [Google Scholar]
  4. DELCASTILLO J., MORALES T. A., SANCHEZ V. ACTION OF PIPERAZINE ON THE NEUROMUSCULAR SYSTEM OF ASCARIS LUMBRICOIDES. Nature. 1963 Nov 16;200:706–707. doi: 10.1038/200706a0. [DOI] [PubMed] [Google Scholar]
  5. HODGKIN A. L., KATZ B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949 Mar 1;108(1):37–77. doi: 10.1113/jphysiol.1949.sp004310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. HOLMAN M. E. Membrane potentials recorded with high-resistance micro-electrodes; and the effects of changes in ionic environment on the electrical and mechanical activity of the smooth muscle of the taenia coli of the guineapig. J Physiol. 1958 May 28;141(3):464–488. doi: 10.1113/jphysiol.1958.sp005989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. JARMAN M. Electrical activity in the muscle cells of Ascaris lumbricoides. Nature. 1959 Oct 17;184(Suppl 16):1244–1244. doi: 10.1038/1841244a0. [DOI] [PubMed] [Google Scholar]
  8. KURIYAMA H. The influence of potassium, sodium and chloride on the membrane potential of the smooth muscle of taenia coli. J Physiol. 1963 Apr;166:15–28. doi: 10.1113/jphysiol.1963.sp007088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. TRAUTWEIN W., KASSEBAUM D. G. On the mechanism of spontaneous impulse generation in the pacemaker of the heart. J Gen Physiol. 1961 Nov;45:317–330. doi: 10.1085/jgp.45.2.317. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES