Abstract
A simple and reproducible method has been developed for following fluid transport by an in vitro preparation of mammalian gall bladder, based upon weighing the organ at 5 minute intervals. Both guinea pig and rabbit gall bladders transport NaCl and water in isotonic proportions from lumen to serosa. In the rabbit bicarbonate stimulates transport, but there is no need for exogenous glucose. The transport rate is not affected by removal of potassium from the bathing solutions. Albumin causes a transient weight loss from the gall bladder wall, apparently by making the serosal smooth muscle fibers contract. Active NaCl transport can carry water against osmotic gradients of up to two atmospheres. Under passive conditions water may also move against its activity gradient in the presence of a permeating solute. The significance of water movement against osmotic gradients during active solute transport is discussed.
Full Text
The Full Text of this article is available as a PDF (855.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- DIAMOND J. M. The mechanism of solute transport by the gall-bladder. J Physiol. 1962 May;161:474–502. doi: 10.1113/jphysiol.1962.sp006899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DIAMOND J. M. The mechanism of water transport by the gall-bladder. J Physiol. 1962 May;161:503–527. doi: 10.1113/jphysiol.1962.sp006900. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GREEN J. P., GIARMAN N. J., SALTER W. T. The action of serum protein fractions on the isolated mammalian myocardium. J Pharmacol Exp Ther. 1952 Nov;106(3):346–352. [PubMed] [Google Scholar]
- GRIM E. A MECHANISM FOR ABSORPTION OF SODIUM CHLORIDE SOLUTIONS FROM THE CANINE GALL BLADDER. Am J Physiol. 1963 Aug;205:247–254. doi: 10.1152/ajplegacy.1963.205.2.247. [DOI] [PubMed] [Google Scholar]
- HEISEY S. R., HELD D., PAPPENHEIMER J. R. Bulk flow and diffusion in the cerebrospinal fluid system of the goat. Am J Physiol. 1962 Nov;203:775–781. doi: 10.1152/ajplegacy.1962.203.5.775. [DOI] [PubMed] [Google Scholar]
- KOEFOED-JOHNSEN V., USSING H. H. The nature of the frog skin potential. Acta Physiol Scand. 1958 Jun 2;42(3-4):298–308. doi: 10.1111/j.1748-1716.1958.tb01563.x. [DOI] [PubMed] [Google Scholar]
- PAGE E. Cat heart muscle in vitro. II. The steady state restpotential in quiescent papillary muscles. J Gen Physiol. 1962 Nov;46:189–199. doi: 10.1085/jgp.46.2.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PARSONS D. S., WINGATE D. L. The effect of osmotic gradients on fluid transfer across rat intestine in vitro. Biochim Biophys Acta. 1961 Jan 1;46:170–183. doi: 10.1016/0006-3002(61)90660-6. [DOI] [PubMed] [Google Scholar]
- PIDOT A. L., DIAMOND J. M. STREAMING POTENTIALS IN A BIOLOGICAL MEMBRANE. Nature. 1964 Feb 15;201:701–702. doi: 10.1038/201701a0. [DOI] [PubMed] [Google Scholar]
- SANDERSON P. H. Potentiometric determination of chloride in biological fluids. Biochem J. 1952 Nov;52(3):502–505. doi: 10.1042/bj0520502. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WHEELER H. O. TRANSPORT OF ELECTROLYTES AND WATER ACROSS WALL OF RABBIT GALL BLADDER. Am J Physiol. 1963 Sep;205:427–438. doi: 10.1152/ajplegacy.1963.205.3.427. [DOI] [PubMed] [Google Scholar]