Abstract
The frog ventricle in sucrose solution contracts for several hours at 25°C, and for as long as 24 hours at 5°G. The possibility that a fraction of the extracellular fluid remains outside of the excitable membrane was examined by measuring the efflux of tracers. The half-time for the efflux to sucrose solution at 25°C of C14 sucrose is about 1 minute, for Na24 is 6.5 minutes, and for Cl86 is 4 minutes. There is no evidence for the retention of an extracellular Na fraction. The Q 10 for Na and Cl efflux is about 1.3. The half-time for K42 efflux is about 180 minutes; the Q 10 is 1.7. The efflux rates of Na24, Cl36 and K42 to sucrose and to Ringer's solutions are quite similar. Ca45 efflux is only one-fifth as fast to sucrose solution as to Ringer's; the retention of Ca++ may be important for maintaining excitability in sucrose solution. P32 efflux is five times faster to sucrose solution than to Ringer's solution, and there is a similar increase in the rate of inosine loss to sucrose solution. The Q 10 for efflux to sucrose solution is 2.2 for P32O4 and 2.4 for inosine. We suggest that energy metabolism is abnormal in ventricles in sucrose solution and that low temperature prolongs excitability by slowing the metabolic change.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ABOOD L. G., GOLDMAN E. Inhibition of phosphorylation during electrical excitation of frog nerves. Am J Physiol. 1956 Feb;184(2):329–332. doi: 10.1152/ajplegacy.1956.184.2.329. [DOI] [PubMed] [Google Scholar]
- BRADY A. J. EXCITATION AND EXCITATION-CONTRACTION COUPLING IN CARDIAC MUSCLE. Annu Rev Physiol. 1964;26:341–356. doi: 10.1146/annurev.ph.26.030164.002013. [DOI] [PubMed] [Google Scholar]
- CARMELIET E. E. INFLUENCE OF LITHIUM IONS ON THE TRANSMEMBRANE POTENTIAL AND CATION CONTENT OF CARDIAC CELLS. J Gen Physiol. 1964 Jan;47:501–530. doi: 10.1085/jgp.47.3.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CASTEELS R. G. Effect of sodium-deficiency on the membrane activity of the frog's heart. Arch Int Physiol Biochim. 1962 Dec;70:599–610. doi: 10.3109/13813456209092886. [DOI] [PubMed] [Google Scholar]
- CRANE R. K., LIPMANN F. The effect of arsenate on aerobic phosphorylation. J Biol Chem. 1953 Mar;201(1):235–243. [PubMed] [Google Scholar]
- HAJDU S. Mechanism of staircase and contracture in ventricular muscle. Am J Physiol. 1953 Sep;174(3):371–380. doi: 10.1152/ajplegacy.1953.174.3.371. [DOI] [PubMed] [Google Scholar]
- Hahn L. A., Hevesy G. C., Rebbe O. H. Do the potassium ions inside the muscle cells and blood corpuscles exchange with those present in the plasma? Biochem J. 1939 Oct;33(10):1549–1558. doi: 10.1042/bj0331549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JOHNSON J. A. Sodium exchange in the frog heart ventricle. Am J Physiol. 1957 Dec;191(3):487–492. doi: 10.1152/ajplegacy.1957.191.3.487. [DOI] [PubMed] [Google Scholar]
- KEYNES R. D., SWAN R. C. The effect of external sodium concentration on the sodium fluxes in frog skeletal muscle. J Physiol. 1959 Oct;147:591–625. doi: 10.1113/jphysiol.1959.sp006264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MARGOSHES M., VALLEE B. L. Flame photometry and spectrometry; principles and applications. Methods Biochem Anal. 1956;3:353–407. doi: 10.1002/9780470110195.ch12. [DOI] [PubMed] [Google Scholar]
- MULLINS L. J., FRUMENTO A. S. The concentration dependence of sodium efflux from muscle. J Gen Physiol. 1963 Mar;46:629–654. doi: 10.1085/jgp.46.4.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NANNINGA L. B. Calculation of free magnesium, calcium and potassium in muscle. Biochim Biophys Acta. 1961 Dec 9;54:338–344. doi: 10.1016/0006-3002(61)90374-2. [DOI] [PubMed] [Google Scholar]
- SERAYDARIAN K., MOMMAERTS W. F., WALLNER A., GUILLORY R. J. An estimation of the true inorganic phosphate content of frog sartorius muscle. J Biol Chem. 1961 Jul;236:2071–2075. [PubMed] [Google Scholar]
- SINGH I. Electrical and mechanical activity of frog's heart in electrolyte-free solutions. Am J Physiol. 1962 Sep;203:422–424. doi: 10.1152/ajplegacy.1962.203.3.422. [DOI] [PubMed] [Google Scholar]
- VAN DER KLOOT W. G., RUBIN N. S. Contraction and action potentials of frog heart muscles soaked in sucrose solution. J Gen Physiol. 1962 Sep;46:35–56. doi: 10.1085/jgp.46.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WAJZER J., NEKHOROCHEFF J., DONDON J. Desamination des nucléotides adényliques pendant la contraction musculaire. C R Hebd Seances Acad Sci. 1958 Jun 30;246(26):3694–3696. [PubMed] [Google Scholar]
- WAJZER J., NEKHOROCHEFF J. Désamination et réamination des nucléotides puriques libres dans le muscle isolé de grenouille, étudiées par l'analyse enzymatique. Arch Sci Physiol (Paris) 1952;6(3):233–246. [PubMed] [Google Scholar]