Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1965 Jan 1;48(3):435–453. doi: 10.1085/jgp.48.3.435

The Mechanism of Discharge Pattern Formation in Crayfish Interneurons

Kimihisa Takeda 1, Donald Kennedy 1
PMCID: PMC2195421  PMID: 14284778

Abstract

Excitatory and inhibitory processes which result in the generation of output impulses were analyzed in single crayfish interneurons by using intracellular recording and membrane polarizing techniques. Individual spikes which are initiated orthodromically in axon branches summate temporally and spatially to generate a main axon spike; temporally dispersed branch spikes often pace repetitive discharge of the main axon. Hyperpolarizing IPSP's sometimes suppress axonal discharge to most of these inputs, but in other cases may interact selectively with some of them. The IPSP's reverse their polarity at a hyperpolarized level of membrane potential; they sometimes exhibit two discrete time courses indicating two different input sources. Outward direct current at the main axon near branches causes repetitive discharges which may last, with optimal current intensities, for 1 to 15 seconds. The relation of discharge frequency to current intensity is linear for an early spike interval, but above 100 to 200 impulses/sec. it begins to show saturation. In one unit the current-frequency curve exhibited two linear portions, suggesting the presence of two spike-generating sites in the axon. Current threshold measurements, using test stimuli of different durations, showed that both accommodation and "early" or "residual" refractoriness contribute to the determination of discharge rate at different frequencies.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. COOMBS J. S., ECCLES J. C., FATT P. Excitatory synaptic action in motoneurones. J Physiol. 1955 Nov 28;130(2):374–395. doi: 10.1113/jphysiol.1955.sp005413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. COOMBS J. S., ECCLES J. C., FATT P. The specific ionic conductances and the ionic movements across the motoneuronal membrane that produce the inhibitory post-synaptic potential. J Physiol. 1955 Nov 28;130(2):326–374. doi: 10.1113/jphysiol.1955.sp005412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CURTIS D. R., ECCLES R. M. The effect of diffusional barriers upon the pharmacology of cells within the central nervous system. J Physiol. 1958 May 28;141(3):446–463. doi: 10.1113/jphysiol.1958.sp005988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. ECCLES J. C., ECCLES R. M., IGGO A., LUNDBERG A. Electrophysiological investigations on Renshaw cells. J Physiol. 1961 Dec;159:461–478. doi: 10.1113/jphysiol.1961.sp006821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. ECCLES J. C., FATT P., KOKETSU K. Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones. J Physiol. 1954 Dec 10;126(3):524–562. doi: 10.1113/jphysiol.1954.sp005226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. FATT P., KATZ B. An analysis of the end-plate potential recorded with an intracellular electrode. J Physiol. 1951 Nov 28;115(3):320–370. doi: 10.1113/jphysiol.1951.sp004675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. FATT P., KATZ B. The effect of inhibitory nerve impulses on a crustacean muscle fibre. J Physiol. 1953 Aug;121(2):374–389. doi: 10.1113/jphysiol.1953.sp004952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. FUORTES M. G., MANTEGAZZINI F. Interpretation of the repetitive firing of nerve cells. J Gen Physiol. 1962 Jul;45:1163–1179. doi: 10.1085/jgp.45.6.1163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. FURSHPAN E. J., POTTER D. D. Slow post-synaptic potentials recorded from the giant motor fibre of the crayfish. J Physiol. 1959 Mar 3;145(2):326–335. doi: 10.1113/jphysiol.1959.sp006144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. GRANIT R., KERNELL D., SHORTESS G. K. QUANTITATIVE ASPECTS OF REPETITIVE FIRING OF MAMMALIAN MOTONEURONES, CAUSED BY INJECTED CURRENTS. J Physiol. 1963 Oct;168:911–931. doi: 10.1113/jphysiol.1963.sp007230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HAGIWARA S., KUSANO K. Synaptic inhibition in giant nerve cell of Onchidium verruculatum. J Neurophysiol. 1961 Mar;24:167–175. doi: 10.1152/jn.1961.24.2.167. [DOI] [PubMed] [Google Scholar]
  12. HAGIWARA S., OOMURA Y. The critical depolarization for the spike in the squid giant axon. Jpn J Physiol. 1958 Sep 15;8(3):234–245. doi: 10.2170/jjphysiol.8.234. [DOI] [PubMed] [Google Scholar]
  13. HAGIWARA S., SAITO N. Membrane potential change and membrane current in supramedullary nerve cell of puffer. J Neurophysiol. 1959 Mar;22(2):204–221. doi: 10.1152/jn.1959.22.2.204. [DOI] [PubMed] [Google Scholar]
  14. HAGIWARA S., TASAKI I. A study on the mechanism of impulse transmission across the giant synapse of the squid. J Physiol. 1958 Aug 29;143(1):114–137. doi: 10.1113/jphysiol.1958.sp006048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hodgkin A. L. The local electric changes associated with repetitive action in a non-medullated axon. J Physiol. 1948 Mar 15;107(2):165–181. doi: 10.1113/jphysiol.1948.sp004260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. ITO M. The electrical activity of spinal ganglion cells investigated with intracellular microelectrodes. Jpn J Physiol. 1957 Dec 20;7(4):297–323. doi: 10.2170/jjphysiol.7.297. [DOI] [PubMed] [Google Scholar]
  17. KENNEDY D., PRESTON J. B. Activity patterns of interneurons in the caudal ganglion of the crayfish. J Gen Physiol. 1960 Jan;43:655–670. doi: 10.1085/jgp.43.3.655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. KENNEDY D., PRESTON J. B. POST-ACTIVATION CHANGES IN EXCITABILITY AND SPONTANEOUS FIRING OF CRUSTACEAN INTERNEURONS. Comp Biochem Physiol. 1963 Feb;9:173–179. doi: 10.1016/0010-406x(63)90081-1. [DOI] [PubMed] [Google Scholar]
  19. KUBOTA K., BROOKHART J. M. Inhibitory synaptic potential of frog motor neurons. Am J Physiol. 1963 Apr;204:660–666. doi: 10.1152/ajplegacy.1963.204.4.660. [DOI] [PubMed] [Google Scholar]
  20. KUFFLER S. W., EYZAGUIRRE C. Synaptic inhibition in an isolated nerve cell. J Gen Physiol. 1955 Sep 20;39(1):155–184. doi: 10.1085/jgp.39.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. MARTIN A. R., PILAR G. DUAL MODE OF SYNAPTIC TRANSMISSION IN THE AVIAN CILIARY GANGLION. J Physiol. 1963 Sep;168:443–463. doi: 10.1113/jphysiol.1963.sp007202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. PRESTON J. B., KENNEDY D. Integrative synaptic mechanisms in the caudal ganglion of the crayfish. J Gen Physiol. 1960 Jan;43:671–681. doi: 10.1085/jgp.43.3.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. TAKEDA K., KENNEDY D. SOMA POTENTIALS AND MODES OF ACTIVATION OF CRAYFISH MOTONEURONS. J Cell Physiol. 1964 Oct;64:165–181. doi: 10.1002/jcp.1030640203. [DOI] [PubMed] [Google Scholar]
  24. TAUC L., HUGHES G. M. Modes of initiation and propagation of spikes in the branching axons of molluscan central neurons. J Gen Physiol. 1963 Jan;46:533–549. doi: 10.1085/jgp.46.3.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. WATANABE A., GRUNDFEST H. Impulse propagation at the septal and commissural junctions of crayfish lateral giant axons. J Gen Physiol. 1961 Nov;45:267–308. doi: 10.1085/jgp.45.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES