Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1965 Jan 1;48(3):515–525. doi: 10.1085/jgp.48.3.515

Effects of Sodium Azide on Sodium Fluxes in Frog Striated Muscle

Paul Horowicz 1, Carl J Gerber 1
PMCID: PMC2195425  PMID: 14284781

Abstract

Unidirectional Na fluxes from frog's striated muscle were measured in the presence of 0 to 5 mM sodium azide. With azide concentrations of 2 and 5 mM the Na efflux was markedly stimulated; the Na efflux with 5 mM azide was about 300 per cent greater than normal. A similar increase was present when all but the 5.0 mM sodium added with azide was replaced by choline. 10-5 M strophanthidin abolished the azide effect on Na24 efflux. Concentrations of azide of 1.0 mM or less had no effect on Na efflux. The Na influx, on the other hand, was only increased by 41 per cent in the presence of 5 mM NaN3. From these findings it is concluded that the active transport of Na is stimulated by the higher concentrations of azide. The hypothesis is advanced that the active transport of Na is controlled by the transmembrane potential and that the stimulation of Na efflux is produced as a consequence of the membrane depolarization caused by the azide.

Full Text

The Full Text of this article is available as a PDF (636.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CAREY M. J., CONWAY E. J., KERNAN R. P. Secretion of sodium ions by the frog's sartorius. J Physiol. 1959 Oct;148:51–82. doi: 10.1113/jphysiol.1959.sp006273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. HODGKIN A. L., HOROWICZ P. Movements of Na and K in single muscle fibres. J Physiol. 1959 Mar 3;145(2):405–432. doi: 10.1113/jphysiol.1959.sp006150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. HODGKIN A. L., HOROWICZ P. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol. 1959 Oct;148:127–160. doi: 10.1113/jphysiol.1959.sp006278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. HODGKIN A. L., KEYNES R. D. Active transport of cations in giant axons from Sepia and Loligo. J Physiol. 1955 Apr 28;128(1):28–60. doi: 10.1113/jphysiol.1955.sp005290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HOROWICZ P., GERBER C. J. EFFECTS OF EXTERNAL POTASSIUM AND STROPHANTHIDIN ON SODIUM FLUXES IN FROG STRIATED MUSCLE. J Gen Physiol. 1965 Jan;48:489–514. doi: 10.1085/jgp.48.3.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. HURLBUT W. P. Effects of azide and choretone on the sodium and potassium contents and the respiration of frog sciatic nerves. J Gen Physiol. 1958 May 20;41(5):959–988. doi: 10.1085/jgp.41.5.959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HURLBUT W. P. SODIUM FLUXES IN DESHEATHED FROG SCIATIC NERVE. J Gen Physiol. 1963 Jul;46:1191–1222. doi: 10.1085/jgp.46.6.1191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. JOHNSON J. A. Influence of ouabain, strophanthidin and dihydrostrophanthidin on sodium and potassium transport in frog sartorii. Am J Physiol. 1956 Nov;187(2):328–332. doi: 10.1152/ajplegacy.1956.187.2.328. [DOI] [PubMed] [Google Scholar]
  9. KEYNES R. D., SWAN R. C. The effect of external sodium concentration on the sodium fluxes in frog skeletal muscle. J Physiol. 1959 Oct;147:591–625. doi: 10.1113/jphysiol.1959.sp006264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LING G., GERARD R. W. The membrane potential and metabolism of muscle fibers. J Cell Physiol. 1949 Dec;34(3):413–438. doi: 10.1002/jcp.1030340307. [DOI] [PubMed] [Google Scholar]
  11. USSING H. H. Transport of ions across cellular membranes. Physiol Rev. 1949 Apr;29(2):127–155. doi: 10.1152/physrev.1949.29.2.127. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES