Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1965 Mar 1;48(4):699–717. doi: 10.1085/jgp.48.4.699

Sodium Extrusion and Potassium Uptake in Guinea Pig Kidney Cortex Slices

Guillermo Whittembury 1
PMCID: PMC2195429  PMID: 14324983

Abstract

Slices from the cortex corticis of the guinea pig kidney were immersed in a chilled solution without K and then reimmersed in warmer solutions. The Na and K concentrations and the membrane potential Vm were then studied as a function of the Na and K concentrations of the reimmersion fluid. It was found that Na is extruded from the cells against a large electrochemical potential gradient. Q10 for net Na outflux was ∼2.5. At bath K concentrations larger than 8 mM the behavior of K was largely passive. At the outset of reimmersion (Vm > EK) K influx seemed secondary to Na extrusion. Na extrusion would promote K entrance, being limited and requiring the presence of K in the bathing fluid. At bath K concentrations below 8 mM, K influx was up an electrochemical potential gradient. Thus a parallel active K uptake is apparent. Q10 for net K influx was ∼2.0. Dinitrophenol inhibited net Na outflux and net K influx, Q10 became <1.1 for both fluxes. The ratio between these fluxes varied. Thus at the outset of reimmersion the net Na outflux to net K influx ratio was >1. After 8 minutes it was <1.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADRIAN R. H. The effect of internal and external potassium concentration on the membrane potential of frog muscle. J Physiol. 1956 Sep 27;133(3):631–658. doi: 10.1113/jphysiol.1956.sp005615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BRICKER N. S., BIBER T., USSING H. H. Exposure of the isolated from skin to high potassium concentrations at the internal surface. I. Bioelectric phenomena and sodium transport. J Clin Invest. 1963 Jan;42:88–99. doi: 10.1172/JCI104699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BURG M. B., GROLLMAN E. F., ORLOFF J. SODIUM AND POTASSIUM FLUX OF SEPARATED RENAL TUBULES. Am J Physiol. 1964 Mar;206:483–491. doi: 10.1152/ajplegacy.1964.206.3.483. [DOI] [PubMed] [Google Scholar]
  4. CALDWELL P. C., DOWNING A. C. The preparation of capillary microelectrodes. J Physiol. 1955 May 27;128(2):31P–31P. [PubMed] [Google Scholar]
  5. CONWAY E. J. Critical energy barriers in the excretion of sodium. Nature. 1960 Jul 30;187:394–396. doi: 10.1038/187394a0. [DOI] [PubMed] [Google Scholar]
  6. CORT J. H., KLEINZELLER A. The effect of denervation, pituitrin and varied cation concentration gradients on the transport of cations and water in kidney slices. J Physiol. 1956 Aug 28;133(2):287–300. doi: 10.1113/jphysiol.1956.sp005586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. CORT J. H., KLEINZELLER A. The effect of temperature on the transport of sodium and potassium by kidney cortex slices. J Physiol. 1958 Jul 14;142(2):208–218. doi: 10.1113/jphysiol.1958.sp006010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Conway E. J., Fitzgerald O. Diffusion relations of urea, inulin and chloride in some mammalian tissues. J Physiol. 1942 Jun 2;101(1):86–105. doi: 10.1113/jphysiol.1942.sp003968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. FRAZIER H. S., LEAF A. The electrical characteristics of active sodium transport in the toad bladder. J Gen Physiol. 1963 Jan;46:491–503. doi: 10.1085/jgp.46.3.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. GIEBISCH G. Electrical potential measurements on single nephrons of Necturus. J Cell Physiol. 1958 Apr;51(2):221–239. doi: 10.1002/jcp.1030510208. [DOI] [PubMed] [Google Scholar]
  11. GIEBISCH G. Measurements of electrical potential differences on single nephrons of the perfused Necturus kidney. J Gen Physiol. 1961 Mar;44:659–678. doi: 10.1085/jgp.44.4.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. KERNAN R. P. Membrane potential changes during sodium transport in frog sartorius muscle. Nature. 1962 Mar 10;193:986–987. doi: 10.1038/193986a0. [DOI] [PubMed] [Google Scholar]
  13. KEYNES R. D., MAISEL G. W. The energy requirement for sodium extrusion from a frog muscle. Proc R Soc Lond B Biol Sci. 1954 May 27;142(908):383–392. doi: 10.1098/rspb.1954.0031. [DOI] [PubMed] [Google Scholar]
  14. LEAF A. On the mechanism of fluid exchange of tissues in vitro. Biochem J. 1956 Feb;62(2):241–248. doi: 10.1042/bj0620241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LING G., GERARD R. W. The normal membrane potential of frog sartorius fibers. J Cell Physiol. 1949 Dec;34(3):383–396. doi: 10.1002/jcp.1030340304. [DOI] [PubMed] [Google Scholar]
  16. MAIZELS M., REMINGTON M. Mercaptomerin and water exchange in cortex slices of rat kidney. J Physiol. 1958 Sep 23;143(2):275–282. doi: 10.1113/jphysiol.1958.sp006058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. MUDGE G. H. Electrolyte and water metabolism of rabbit kidney slices; effect of metabolic inhibitors. Am J Physiol. 1951 Oct;167(1):206–223. doi: 10.1152/ajplegacy.1951.167.1.206. [DOI] [PubMed] [Google Scholar]
  18. MUDGE G. H. Electrolyte metabolism of rabbit-kidney slices; studies with radioactive potassium and sodium. Am J Physiol. 1953 Jun;173(3):511–522. doi: 10.1152/ajplegacy.1953.173.3.511. [DOI] [PubMed] [Google Scholar]
  19. MUDGE G. H. Studies on potassium accumulation by rabbit kidney slices; effect of metabolic activity. Am J Physiol. 1951 Apr 1;165(1):113–127. doi: 10.1152/ajplegacy.1951.165.1.113. [DOI] [PubMed] [Google Scholar]
  20. ORLOFF J., BURG M. Effect of strophanthidin on electrolyte excretion in the chicken. Am J Physiol. 1960 Jul;199:49–54. doi: 10.1152/ajplegacy.1960.199.1.49. [DOI] [PubMed] [Google Scholar]
  21. POST R. L., JOLLY P. C. The linkage of sodium, potassium, and ammonium active transport across the human erythrocyte membrane. Biochim Biophys Acta. 1957 Jul;25(1):118–128. doi: 10.1016/0006-3002(57)90426-2. [DOI] [PubMed] [Google Scholar]
  22. ROBINSON J. R. Retention of potassium by rabbit kidney slices at 0 degree C. J Physiol. 1963 Jul;167:328–343. doi: 10.1113/jphysiol.1963.sp007153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. SHIPP J. C., HANENSON I. B., WINDHAGER E. E., SCHATZMANN H. J., WHITTEMBURY G., YOSHIMURA H., SOLOMON A. K. Single proximal tubules of the Necturus kidney; methods for micropuncture and microperfusion. Am J Physiol. 1958 Dec;195(3):563–569. doi: 10.1152/ajplegacy.1958.195.3.563. [DOI] [PubMed] [Google Scholar]
  24. WHITTAM R. Active cation transport as a pace-maker of respiration. Nature. 1961 Aug 5;191:603–604. doi: 10.1038/191603a0. [DOI] [PubMed] [Google Scholar]
  25. WHITTAM R., DAVIES R. E. Active transport of water, sodium, potassium and alpha-oxoglutarate by kidney-cortex slices. Biochem J. 1953 Dec;55(5):880–888. doi: 10.1042/bj0550880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. WHITTAM R., DAVIES R. E. Relations between metabolism and the rate of turnover of sodium and potassium in guinea pig kidney-cortex slices. Biochem J. 1954 Mar;56(3):445–453. doi: 10.1042/bj0560445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. WHITTAM R. The permeability of kidney cortex to chloride. J Physiol. 1956 Mar 28;131(3):542–554. doi: 10.1113/jphysiol.1956.sp005481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. WHITTAM R., WILLIS J. S. ION MOVEMENTS AND OXYGEN CONSUMPTION IN KIDNEY CORTEX SLICES. J Physiol. 1963 Aug;168:158–177. doi: 10.1113/jphysiol.1963.sp007184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. WHITTEMBURY G., SUGINO N., SOLOMON A. K. Ionic permeability and electrical potential differences in Necturus kidney cells. J Gen Physiol. 1961 Mar;44:689–712. doi: 10.1085/jgp.44.4.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. WHITTEMBURY G., WINDHAGER E. E. Electrical potential difference measurements in perfused single proximal tubules of Necturus kidney. J Gen Physiol. 1961 Mar;44:679–687. doi: 10.1085/jgp.44.4.679. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES