Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1965 Mar 1;48(4):581–600. doi: 10.1085/jgp.48.4.581

Excitability Changes of the Mauthner Cell during Collateral Inhibition

Y Fukami 1, T Furukawa 1, Y Asada 1
PMCID: PMC2195433  PMID: 14324977

Abstract

Excitability changes during collateral inhibition of the goldfish Mauthner cell (M cell) were measured directly by stimulating the cell with current pulses applied through an intracellular electrode. Excitability was suppressed during the extrinsic hyperpolarizing potential (EHP) as well as during the collateral IPSP. The inhibitory effect of the EHP was shown to be comparable in intensity to the effect of the IPSP. Excitability changes in the M cell during collateral IPSP depended on changes in the membrane conductance as well as in the membrane potential. Some simple equations are advanced which describe the excitability change during the IPSP in terms of changes in membrane potential and conductance. It was also found that invasion of antidromic impulses into the M cell was suppressed during the EHP, but not during the collateral IPSP. Conductance increase during the IPSP did not interfere with the invasion of antidromic impulses.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARAKI T., EOCLES J. C., ITO M. Correlation of the inhibitory post-synaptic potential of motoneurones with the latency and time course of inhibition of monosynaptic reflexes. J Physiol. 1960 Dec;154:354–377. doi: 10.1113/jphysiol.1960.sp006584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. ARAKI T., OTANI T. Response of single motoneurons to direct stimulation in toad's spinal cord. J Neurophysiol. 1955 Sep;18(5):472–485. doi: 10.1152/jn.1955.18.5.472. [DOI] [PubMed] [Google Scholar]
  3. ARAKI T., TERZUOLO C. A. Membrane currents in spinal motoneurons associated with the action potential and synaptic activity. J Neurophysiol. 1962 Nov;25:772–789. doi: 10.1152/jn.1962.25.6.772. [DOI] [PubMed] [Google Scholar]
  4. ASADA Y. EFFECTS OF INTRACELLULARLY INJECTED ANIONS ON THE MAUTHNER CELLS OF GOLDFISH. Jpn J Physiol. 1963 Dec 15;13:583–598. doi: 10.2170/jjphysiol.13.583. [DOI] [PubMed] [Google Scholar]
  5. BODIAN D. Introductory survey of neurons. Cold Spring Harb Symp Quant Biol. 1952;17:1–13. doi: 10.1101/sqb.1952.017.01.003. [DOI] [PubMed] [Google Scholar]
  6. COOMBS J. S., CURTIS D. R., ECCLES J. C. The electrical constants of the motoneurone membrane. J Physiol. 1959 Mar 12;145(3):505–528. doi: 10.1113/jphysiol.1959.sp006158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. COOMBS J. S., ECCLES J. C., FATT P. The specific ionic conductances and the ionic movements across the motoneuronal membrane that produce the inhibitory post-synaptic potential. J Physiol. 1955 Nov 28;130(2):326–374. doi: 10.1113/jphysiol.1955.sp005412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. CURTIS D. R., ECCLES J. C. The time courses of excitatory and inhibitory synaptic actions. J Physiol. 1959 Mar 12;145(3):529–546. doi: 10.1113/jphysiol.1959.sp006159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. FURSHPAN E. J. "ELECTRICAL TRANSMISSION" AT AN EXCITATORY SYNAPSE IN A VERTEBRATE BRAIN. Science. 1964 May 15;144(3620):878–880. doi: 10.1126/science.144.3620.878. [DOI] [PubMed] [Google Scholar]
  10. FURSHPAN E. J., FURUKAWA T. Intracellular and extracellular responses of the several regions of the Mauthner cell of the goldfish. J Neurophysiol. 1962 Nov;25:732–771. doi: 10.1152/jn.1962.25.6.732. [DOI] [PubMed] [Google Scholar]
  11. FURUKAWA T., FUKAMI Y., ASADA Y. A THIRD TYPE OF INHIBITION IN THE MAUTHNER CELL OF GOLDFISH. J Neurophysiol. 1963 Sep;26:759–774. doi: 10.1152/jn.1963.26.5.759. [DOI] [PubMed] [Google Scholar]
  12. FURUKAWA T., FUKAMI Y., ASADA Y. EFFECTS OF STRYCHNINE AND PROCAINE ON COLLATERAL INHIBITION OF THE MAUTHNER CELL OF GOLDFISH. Jpn J Physiol. 1964 Aug 15;14:386–399. doi: 10.2170/jjphysiol.14.386. [DOI] [PubMed] [Google Scholar]
  13. FURUKAWA T., FURSHPAN E. J. Two inhibitory mechanisms in the Mauthner neurons of goldfish. J Neurophysiol. 1963 Jan;26:140–176. doi: 10.1152/jn.1963.26.1.140. [DOI] [PubMed] [Google Scholar]
  14. KUBOTA K., BROOKHART J. M. Inhibitory synaptic potential of frog motor neurons. Am J Physiol. 1963 Apr;204:660–666. doi: 10.1152/ajplegacy.1963.204.4.660. [DOI] [PubMed] [Google Scholar]
  15. KUFFLER S. W., EYZAGUIRRE C. Synaptic inhibition in an isolated nerve cell. J Gen Physiol. 1955 Sep 20;39(1):155–184. doi: 10.1085/jgp.39.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES