Abstract
Precise evaluation of permeability of biological tissues is often prevented by imprecise knowledge of operative forces. This problem has been approached by analysis of fluxes of isotopic species applied to opposite surfaces of a membrane. A simple and rather general flux ratio equation has been derived which may permit evaluation of membrane permeability, even without knowledge of forces, or of the nature of active transport processes. Permeability as thus defined should be insensitive to coupled flows, either of other species or of metabolism. In appropriate circumstances application of the equation may permit evaluation of the contributions of the various processes to the transport of the examined species. Composite series membranes would be expected to obey the unmodified general equation. Heterogeneous parallel pathways would alter the relation in a predictable manner. The effect of isotope interaction is specifically incorporated. The formulation is applied to consideration of energetics of active transport.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ANDERSEN B., USSING H. H. Solvent drag on non-electrolytes during osmotic flow through isolated toad skin and its response to antidiuretic hormone. Acta Physiol Scand. 1957 Jun 8;39(2-3):228–239. doi: 10.1111/j.1748-1716.1957.tb01425.x. [DOI] [PubMed] [Google Scholar]
- HAYS R. M., LEAF A. Studies on the movement of water through the isolated toad bladder and its modification by vasopressin. J Gen Physiol. 1962 May;45:905–919. doi: 10.1085/jgp.45.5.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HEINZ E., PATLAK C. S. Energy expenditure by active transport mechanisms. Biochim Biophys Acta. 1960 Nov 4;44:324–334. doi: 10.1016/0006-3002(60)91568-7. [DOI] [PubMed] [Google Scholar]
- HOSHIKO T., LINDLEY B. D. THE RELATIONSHIP OF USSING'S FLUX-RATIO EQUATION TO THE THERMODYNAMIC DESCRIPTION OF MEMBRANE PERMEABILITY. Biochim Biophys Acta. 1964 Mar 30;79:301–317. [PubMed] [Google Scholar]
- KEDEM O., KATCHALSKY A. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim Biophys Acta. 1958 Feb;27(2):229–246. doi: 10.1016/0006-3002(58)90330-5. [DOI] [PubMed] [Google Scholar]
- KOEFOED-JOHNSEN V., USSING H. H. The contributions of diffusion and flow to the passage of D2O through living membranes; effect of neurohypophyseal hormone on isolated anuran skin. Acta Physiol Scand. 1953 Mar 31;28(1):60–76. doi: 10.1111/j.1748-1716.1953.tb00959.x. [DOI] [PubMed] [Google Scholar]
- LEAF A., DEMPSEY E. Some effects of mammalian neurohypophyseal hormones on metabolism and active transport of sodium by the isolated toad bladder. J Biol Chem. 1960 Jul;235:2160–2163. [PubMed] [Google Scholar]
- LEAF A., HAYS R. M. Permeability of the isolated toad bladder to solutes and its modification by vasopressin. J Gen Physiol. 1962 May;45:921–932. doi: 10.1085/jgp.45.5.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nims L. F. Tracers, Transfer through Membranes, and Coefficients of Transfer. Science. 1962 Jul 13;137(3524):130–132. doi: 10.1126/science.137.3524.130. [DOI] [PubMed] [Google Scholar]
- PORTER G. A., EDELMAN I. S. THE ACTION OF ALDOSTERONE AND RELATED CORTICOSTEROIDS ON SODIUM TRANSPORT ACROSS THE TOAD BLADDER. J Clin Invest. 1964 Apr;43:611–620. doi: 10.1172/JCI104946. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROBERTSON J. S. Theory and use of tracers in determining transfer rates in biological systems. Physiol Rev. 1957 Apr;37(2):133–154. doi: 10.1152/physrev.1957.37.2.133. [DOI] [PubMed] [Google Scholar]
- TOSTESON D. C., ROBERTSON J. S. Potassium transport in duck red cells. J Cell Physiol. 1956 Feb;47(1):147–166. doi: 10.1002/jcp.1030470110. [DOI] [PubMed] [Google Scholar]