Abstract
The effects of ten cations and fifteen anions on the excitability of the squid giant axon were studied. The method of intracellular perfusion used in these investigations is described in detail. Empirical criteria were established for evaluating the relative favorability of any salt solution for maintaining the normal excitability of the membrane of the axon. It was found that both cations and anions could be ordered in sequences of relative favorability, which are directly related to the classic lyotropic sequences found for protein macromolecules and in colloid chemistry in general. The effects of concentration, salt mixtures, non-electrolyte carriers, enzymes, metabolic inhibitors, pH, and external media were also studied. The results are interpreted in terms of current concepts of the interactions between water structure, charged macromolecules, and their ionic environments. A macromolecular approach is given to the physicochemical nature of the "two stable states" of the excitable membrane, to describe the time-dependent potential changes observed.
Full Text
The Full Text of this article is available as a PDF (1.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BAKER P. F., HODGKIN A. L., MEVES H. THE EFFECT OF DILUTING THE INTERNAL SOLUTION ON THE ELECTRICAL PROPERTIES OF A PERFUSED GIANT AXON. J Physiol. 1964 Apr;170:541–560. doi: 10.1113/jphysiol.1964.sp007348. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BAKER P. F., HODGKIN A. L., SHAW T. I. Replacement of the axoplasm of giant nerve fibres with artificial solutions. J Physiol. 1962 Nov;164:330–354. doi: 10.1113/jphysiol.1962.sp007025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DEFFNER G. G. The dialyzable free organic constituents of squid blood; a comparison with nerve axoplasm. Biochim Biophys Acta. 1961 Feb 18;47:378–388. doi: 10.1016/0006-3002(61)90298-0. [DOI] [PubMed] [Google Scholar]
- FRANKENHAEUSER B., HODGKIN A. L. The after-effects of impulses in the giant nerve fibres of Loligo. J Physiol. 1956 Feb 28;131(2):341–376. doi: 10.1113/jphysiol.1956.sp005467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KLOTZ I. M. Protein hydration and behavior; many aspects of protein behavior can be interpreted in terms of frozen water of hydration. Science. 1958 Oct 10;128(3328):815–822. doi: 10.1126/science.128.3328.815. [DOI] [PubMed] [Google Scholar]
- MOORE J. W., NARAHASHI T., ULBRICHT W. SODIUM CONDUCTANCE SHIFT IN AN AXON INTERNALLY PERFUSED WITH A SUCROSE AND LOW-POTASSIUM SOLUTION. J Physiol. 1964 Aug;172:163–173. doi: 10.1113/jphysiol.1964.sp007410. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NARAHASHI T. DEPENDENCE OF RESTING AND ACTION POTENTIALS ON INTERNAL POTASSIUM IN PERFUSED SQUID GIANT AXONS. J Physiol. 1963 Nov;169:91–115. doi: 10.1113/jphysiol.1963.sp007243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- OIKAWA T., SPYROPOULOS C. S., TASAKI I., TEORELL T. Methods for perfusing the giant axon of Loligo pealii. Acta Physiol Scand. 1961 Jun;52:195–196. doi: 10.1111/j.1748-1716.1961.tb02218.x. [DOI] [PubMed] [Google Scholar]
- TASAKI I., LUXORO M. INTRACELLULAR PERFUSION OF CHILEAN GIANT SQUID AXONS. Science. 1964 Sep 18;145(3638):1313–1315. doi: 10.1126/science.145.3638.1313. [DOI] [PubMed] [Google Scholar]
- TASAKI I. Permeability of squid axon membrane to various ions. J Gen Physiol. 1963 Mar;46:755–772. doi: 10.1085/jgp.46.4.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TASAKI I., TAKENAKA T. EFFECTS OF VARIOUS POTASSIUM SALTS AND PROTEASES UPON EXCITABILITY OF INTRACELLULARLY PERFUSED SQUID GIANT AXONS. Proc Natl Acad Sci U S A. 1964 Sep;52:804–810. doi: 10.1073/pnas.52.3.804. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TASAKI I., TAKENAKA T. RESTING AND ACTION POTENTIAL OF SQUID GIANT AXONS INTRACELLULARLY PERFUSED WITH SODIUM-RICH SOLUTIONS. Proc Natl Acad Sci U S A. 1963 Oct;50:619–626. doi: 10.1073/pnas.50.4.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TASAKII, SHIMAMURA M. Further observations on resting and action potential of intracellularly perfused squid axon. Proc Natl Acad Sci U S A. 1962 Sep 15;48:1571–1577. doi: 10.1073/pnas.48.9.1571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TASAKII, WATANABE A., TAKENAKA T. Resting and action potential of intracellularly perfused squid giant axon. Proc Natl Acad Sci U S A. 1962 Jul 15;48:1177–1184. doi: 10.1073/pnas.48.7.1177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- VONHIPPEL P. H., WONG K. Y. NEUTRAL SALTS: THE GENERALITY OF THEIR EFFECTS ON THE STABILITY OF MACROMOLECULAR CONFORMATIONS. Science. 1964 Aug 7;145(3632):577–580. doi: 10.1126/science.145.3632.577. [DOI] [PubMed] [Google Scholar]