Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1965 Jul 1;48(6):1003–1010. doi: 10.1085/jgp.48.6.1003

The Suppression of the Late After-Potential in Rubidium-Containing Frog Muscle Fibers

D C Hellam 1, D A Goldstein 1, L D Peachey 1, W H Freygang Jr 1
PMCID: PMC2195450  PMID: 5855505

Abstract

The late after-potential that follows trains of impulses in frog muscle fibers is virtually absent when most of the intracellular potassium is replaced by rubidium and the muscle is immersed in rubidium-containing Ringer's fluid. Its amplitude is also reduced in freshly dissected, potassium-containing muscle fibers that are immersed directly in Rb-Ringer's fluid. These findings are discussed in terms of the model for muscle membrane of Adrian and Freygang (1962 a, b) and in relation to the report of Adrian (1964) that Rb-containing muscle fibers do not exhibit the variations in potassium permeability as a function of membrane potential that are found in fibers with normal intracellular potassium concentration immersed in Ringer's fluid.

Full Text

The Full Text of this article is available as a PDF (465.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADRIAN R. H., FREYGANG W. H. Potassium conductance of frog muscle membrane under controlled voltage. J Physiol. 1962 Aug;163:104–114. doi: 10.1113/jphysiol.1962.sp006960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. ADRIAN R. H. THE RUBIDIUM AND POTASSIUM PERMEABILITY OF FROG MUSCLE MEMBRANE. J Physiol. 1964 Dec;175:134–159. doi: 10.1113/jphysiol.1964.sp007508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boyle P. J., Conway E. J., Kane F., O'reilly H. L. Volume of interfibre spaces in frog muscle and the calculation of concentrations in the fibre water. J Physiol. 1941 Jun 30;99(4):401–414. doi: 10.1113/jphysiol.1941.sp003911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DESMEDT J. E. Electrical activity and intracellular sodium concentration in frog muscle. J Physiol. 1953 Jul;121(1):191–205. doi: 10.1113/jphysiol.1953.sp004940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FREYGANG W. H., Jr, GOLDSTEIN D. A., HELLAM D. C., PEACHEY L. D. THE RELATION BETWEEN THE LATE AFTER-POTENTIAL AND THE SIZE OF THE TRANSVERSE TUBULAR SYSTEM OF FROG MUSCLE. J Gen Physiol. 1964 Nov;48:235–263. doi: 10.1085/jgp.48.2.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. FREYGANG W. H., Jr, GOLDSTEIN D. A., HELLAM D. C. THE AFTER-POTENTIAL THAT FOLLOWS TRAINS OF IMPULSES IN FROG MUSCLE FIBERS. J Gen Physiol. 1964 May;47:929–952. doi: 10.1085/jgp.47.5.929. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES