Abstract
A comprehensive survey of the interaction of the copper proteins and oxygen is presented including a correlation of structure, function, and other properties of the known copper oxidases and of hemocyanin. The origin of their blue color and the structure of copper complexes and copper proteins are related to the oxidation state of copper ion and relevant electronic transitions probably arising from the formation of charge transfer complexes. The oxygen reactions of hemocyanin, ceruloplasmin, and cytochrome oxidase show half-saturation values far below the other Cu enzymes. The formation of hydrogen peroxide as a reaction product is associated with the presence of one Cu atom per oxidase molecule or catalytic system. Water is the corresponding product of the other Cu oxidases with four or more Cu atoms per molecule, except for monoamine oxidase. Mechanisms for the oxidase action of the two and four electron transfer Cu oxidases and tyrosinase are proposed. These reactions account for the number, the oxidation-reduction potential, and the oxidation state of Cu in the resting enzyme, the cyclical change from Cu(II) to Cu(I), the diatomic nature of O2, the sequence of the oxidation and reduction reactions, and other salient features. The catalytic reactions involved in the oxidation of ascorbic acid by plant ascorbate oxidase, ceruloplasmin, and Cu(II) are compared. Finally the substrate specificity, inhibitory control, and the detailed mechanism of the oxidase activity of ceruloplasmin are summarized.
Full Text
The Full Text of this article is available as a PDF (2.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BENTLEY R., NEUBERGER A. The mechanism of the action of uricase. Biochem J. 1952 Dec;52(4):694–699. doi: 10.1042/bj0520694. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BLUMBERG W. E., EISINGER J., AISEN P., MORELL A. G., SCHEINBERG I. H. Physical and chemical studies on ceruloplasmin. I. The relation between blue color and the valence states of copper. J Biol Chem. 1963 May;238:1675–1682. [PubMed] [Google Scholar]
- BOUCHILLOUX S., McMAHILL P., MASON H. S. The multiple forms of mushroom tyrosinase. Purification and molecular properties of the enzymes. J Biol Chem. 1963 May;238:1699–1707. [PubMed] [Google Scholar]
- BROMAN L., MALMSTROEM B. G., AASA R. THE ROLE OF COPPER IN THE CATALYTIC ACTION OF LACCASE AND CERULOPLASMIN. Biochim Biophys Acta. 1963 Nov 29;75:365–376. doi: 10.1016/0006-3002(63)90624-3. [DOI] [PubMed] [Google Scholar]
- CHANCE B. Cellular oxygen requirements. Fed Proc. 1957 Sep;16(3):671–680. [PubMed] [Google Scholar]
- COOPER J. A., SMITH W., BACILA M., MEDINA H. Galactose oxidase from Polyporus circinatus, Fr. J Biol Chem. 1959 Mar;234(3):445–448. [PubMed] [Google Scholar]
- DAWSON C. R. The biological significance of chelation. The copper protein, ascorbic acid oxidase. Ann N Y Acad Sci. 1960 Aug 18;88:353–360. doi: 10.1111/j.1749-6632.1960.tb20034.x. [DOI] [PubMed] [Google Scholar]
- FRIEDEN E., ALLES J. Subtle interactions of cupric ion with nucleic acid and components. J Biol Chem. 1958 Feb;230(2):797–804. [PubMed] [Google Scholar]
- Hill J. M., Mann P. J. Further properties of the diamine oxidase of pea seedlings. Biochem J. 1964 Apr;91(1):171–182. doi: 10.1042/bj0910171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JOLLEY R. L., Jr, MASON H. S. THE MULTIPLE FORMS OF MUSHROOM TYROSINASE. INTERCONVERSION. J Biol Chem. 1965 Mar;240:PC1489–PC1491. [PubMed] [Google Scholar]
- LEVIN E. Y., KAUFMAN S. Studies on the enzyme catalyzing the conversion of 3,4-dihydroxyphenylethylamine to norepinephrine. J Biol Chem. 1961 Jul;236:2043–2049. [PubMed] [Google Scholar]
- Millikan G. A. The kinetics of blood pigments: haemocyanin and haemoglobin. J Physiol. 1933 Sep 4;79(2):158–179. doi: 10.1113/jphysiol.1933.sp003037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NAKAMURA T., MASON H. S. An electron spin resonance study of copper valence in oxyhemocyanin. Biochem Biophys Res Commun. 1960 Sep;3:297–299. doi: 10.1016/0006-291x(60)90244-8. [DOI] [PubMed] [Google Scholar]
- THIMANN K. V., YOCUM C. S., HACKETT D. P. Terminal oxidases and growth in plant tissues. III. Terminal oxidation in potato tuber tissue. Arch Biochem Biophys. 1954 Nov;53(1):239–257. doi: 10.1016/0003-9861(54)90249-0. [DOI] [PubMed] [Google Scholar]
- WALAAS E., WALAAS O. Oxidation of reduced phosphopyridine nucleotides by p-phenylenediamines, catecholamines and serotonin in the presence of ceruloplasmin. Arch Biochem Biophys. 1961 Oct;95:151–162. doi: 10.1016/0003-9861(61)90121-7. [DOI] [PubMed] [Google Scholar]
- YAMADA H., YASUNOBU K. T. Monoamine oxidase. I. Purification, crystallization, and properties of plasma monoamine oxidase. J Biol Chem. 1962 May;237:1511–1516. [PubMed] [Google Scholar]
- YAMADA H., YASUNOBU K., YAMANO T., MASON H. S. Copper in plasma amine oxidase. Nature. 1963 Jun 15;198:1092–1093. doi: 10.1038/1981092a0. [DOI] [PubMed] [Google Scholar]