Abstract
Glass micropipette electrodes have been employed to study the transsurface potential difference of Neurospora crassa. For mature hyphae grown in agar cultures, the internal potential is large and negative, often exceeding -200 mv. The potential is sensitive to the concentrations of extracellular potassium, sodium, hydrogen, and calcium ions, but does not vary in a manner which is readily explained by ionic diffusion potentials. With extracellular solutions containing only potassium chloride (or sulfate) and sucrose, the internal potential shifts toward zero (becomes less negative) at 45 mv per tenfold increase of potassium, over the range 0.1 to 10 mM. A similar result has been found with sodium, though the slope is only 33 mv/log unit. Calcium (1 mM) diminishes the influence of potassium and sodium by 60 to 70 per cent. As potassium or sodium is raised above 20 mM, the slope of the internal potential increases sharply to 85 to 90 mv/log unit, both in the presence and absence of calcium. With increasing hydrogen ion concentration, too, the internal potential shifts toward zero; in this case the slope is about 12 mv/pH unit at pH 9 and rises smoothly to 33 mv/pH unit at pH 3. All these phenomena are probably properties of the plasma membrane. The polysaccharide cell wall contains few fixed negative charges, has a low transverse resistance, and supports very little potential difference when separated from the plasma membrane.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ADRIAN R. H. The effect of internal and external potassium concentration on the membrane potential of frog muscle. J Physiol. 1956 Sep 27;133(3):631–658. doi: 10.1113/jphysiol.1956.sp005615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BACHMANN B. J., BONNER D. M. Protoplasts from Neurospora crassa. J Bacteriol. 1959 Oct;78:550–556. doi: 10.1128/jb.78.4.550-556.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CONWAY E. J., DOWNEY M. pH values of the yeast cell. Biochem J. 1950 Sep;47(3):355–360. doi: 10.1042/bj0470355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Emerson S., Emerson M. R. PRODUCTION, REPRODUCTION, AND REVERSION OF PROTOPLAST-LIKE STRUCTURES IN THE OSMOTIC STRAIN OF NEUROSPORA CRASSA. Proc Natl Acad Sci U S A. 1958 Jul 15;44(7):668–671. doi: 10.1073/pnas.44.7.668. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FREYGANG W. H., Jr, GOLDSTEIN D. A., HELLAM D. C. THE AFTER-POTENTIAL THAT FOLLOWS TRAINS OF IMPULSES IN FROG MUSCLE FIBERS. J Gen Physiol. 1964 May;47:929–952. doi: 10.1085/jgp.47.5.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GLYNN I. M. Sodium and potassium movements in human red cells. J Physiol. 1956 Nov 28;134(2):278–310. doi: 10.1113/jphysiol.1956.sp005643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HALL M. O., NYC J. F. A comparison of the fatty acid composition of lecithin and two of its phospholipid precursors from a mutant strain of Neurospora crassa. Biochim Biophys Acta. 1962 Jan 29;56:370–372. doi: 10.1016/0006-3002(62)90581-4. [DOI] [PubMed] [Google Scholar]
- HAROLD F. M. Depletion and replenishment of the inorganic polyphosphate pool in Neurospora crassa. J Bacteriol. 1962 May;83:1047–1057. doi: 10.1128/jb.83.5.1047-1057.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KINSKY S. C. Nystatin binding by protoplasts and a particulate fraction of Neurospora crassa, and a basis for the selective toxicity of polyene antifungal antibiotics. Proc Natl Acad Sci U S A. 1962 Jun 15;48:1049–1056. doi: 10.1073/pnas.48.6.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LESTER H. E., GROSS S. R. Efficient method for selection of auxotrophic mutants of Neurospora. Science. 1959 Feb 27;129(3348):572–572. doi: 10.1126/science.129.3348.572. [DOI] [PubMed] [Google Scholar]
- Lester G., Hechter O. THE RELATIONSHIP OF SODIUM, POTASSIUM, AND DEOXYCORTICOSTERONE IN NEUROSPORA CRASSA. Proc Natl Acad Sci U S A. 1959 Dec;45(12):1792–1801. doi: 10.1073/pnas.45.12.1792. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROTHSTEIN A., HAYES A. D. The relationship of the cell surface to metabolism. XIII. The cation-binding properties of the yeast cell surface. Arch Biochem Biophys. 1956 Jul;63(1):87–99. doi: 10.1016/0003-9861(56)90012-1. [DOI] [PubMed] [Google Scholar]
- ROTHSTEIN A. Role of the cell membrane in the metabolism of inorganic electrolytes by microorganisms. Bacteriol Rev. 1959 Dec;23(4):175–201. doi: 10.1128/br.23.4.175-201.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SHANES A. M. Factors in nerve functioning. Fed Proc. 1951 Sep;10(3):611–621. [PubMed] [Google Scholar]
- SLAYMAN C. L., SLAYMAN C. W. Measurement of membrane potentials in Neurospora. Science. 1962 Jun 8;136(3519):876–877. doi: 10.1126/science.136.3519.876. [DOI] [PubMed] [Google Scholar]
- SLAYMAN C. W., TATUM E. L. POTASSIUM TRANSPORT IN NEUROSPORA. I. INTRACELLULAR SODIUM AND POTASSIUM CONCENTRATIONS, AND CATION REQUIREMENTS FOR GROWTH. Biochim Biophys Acta. 1964 Nov 29;88:578–592. [PubMed] [Google Scholar]
- Slayman C. L. Electrical properties of Neurospora crassa. Respiration and the intracellular potential. J Gen Physiol. 1965 Sep;49(1):93–116. doi: 10.1085/jgp.49.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slayman C. W., Tatum E. L. Potassium transport in neurospora. II. Measurement of steady-state potassium fluxes. Biochim Biophys Acta. 1965 May 25;102(1):149–160. [PubMed] [Google Scholar]
- THAYER P. S., HOROWITZ N. H. The L-amino acid oxidase of Neurospora. J Biol Chem. 1951 Oct;192(2):755–767. [PubMed] [Google Scholar]
- TOBIAS J. M., AGIN D. P., PAWLOWSKI R. The excitable system in the cell surface. Circulation. 1962 Nov;26:1145–1150. doi: 10.1161/01.cir.26.5.1145. [DOI] [PubMed] [Google Scholar]
- TSUDA S., TATUM E. L. Intracellular crystalline ergosterol in Neurospora. J Biophys Biochem Cytol. 1961 Oct;11:171–177. doi: 10.1083/jcb.11.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]