Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1965 Sep 1;49(1):253–268. doi: 10.1085/jgp.49.1.253

The Evolution of Oxygen As a Biosynthetic Reagent

Howard Goldfine 1
PMCID: PMC2195466  PMID: 5859924

Abstract

The biosynthesis of certain cell constituents: monounsaturated fatty acids, tyrosine, and nicotinic acid, is oxygen-dependent in many higher organisms. The same compounds can be synthesized by different, oxygen-independent pathways in lower organisms. The general outlines of these pathways are described and the importance of the compounds synthesized is discussed. An examination of the distribution of these pathways among living organisms reveals that oxygen-dependent pathways replaced the "anaerobic" pathways at different branch points on the evolutionary tree. Other groups of compounds are discussed, which are not distributed as widely among living organisms, but are found in all higher organisms. These compounds have specialized functions and their biosynthesis requires molecular oxygen. The oxygen-dependent portions of the biosynthetic pathways leading to porphyrins, quinone coenzymes, carotenoids, sterols, and polyunsaturated fatty acids are summarized. The distribution and functions of these compounds are also considered and an attempt is made to place them in the framework of evolution. While sterols and polyunsaturated fatty acids are found exclusively in the higher Protista and multicellular organisms, carotenoids, porphyrins, and quinones are also found in bacteria. The possibility of oxygen-independent mechanisms for their biosynthesis is discussed.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDREASEN A. A., STIER T. J. Anaerobic nutrition of Saccharomyces cerevisiae. II. Unsaturated fatty acid requirement for growth in a defined medium. J Cell Physiol. 1954 Jun;43(3):271–281. doi: 10.1002/jcp.1030430303. [DOI] [PubMed] [Google Scholar]
  2. BIEKERT E., BUTENANDT A., LINZEN B. Uber Ommochrome. VII. Modellversuche zur Bildung des Xanthommatins in vivo. Hoppe Seylers Z Physiol Chem. 1956 Sep 25;305(4-6):284–289. [PubMed] [Google Scholar]
  3. BISHOP D. H., PANDYA K. P., KING H. K. Ubiquinone and vitamin K in bacteria. Biochem J. 1962 Jun;83:606–614. doi: 10.1042/bj0830606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BLOCH K., BARONOWSKY P., GOLDFINE H., LENNARZ W. J., LIGHT R., NORRIS A. T., SCHEUERBRANDT G. Biosynthesis and metabolism of unsaturated fatty acids. Fed Proc. 1961 Dec;20:921–927. [PubMed] [Google Scholar]
  5. BLOOMFIELD D. K., BLOCH K. The formation of delta 9-unsaturated fatty acids. J Biol Chem. 1960 Feb;235:337–345. [PubMed] [Google Scholar]
  6. CORNFORTH J. W., CORNFORTH R. H., POPJAK G., GORE I. Y. Studies on the biosynthesis of cholesterol. 5. Biosynthesis of squalene from DL-3-hydroxy-3-methyl [2-14C] pentano-5-lactone. Biochem J. 1958 May;69(1):146–155. doi: 10.1042/bj0690146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. COX G. B., GIBSON F. BIOSYNTHESIS OF VITAMIN K AND UBIQUINONE. RELATION TO THE SHIKIMIC ACID PATHWAY IN ESCHERICHIA COLI. Biochim Biophys Acta. 1964 Oct 9;93:204–206. doi: 10.1016/0304-4165(64)90285-5. [DOI] [PubMed] [Google Scholar]
  8. DAVIS B. D. Biochemical explorations with bacterial mutants. Harvey Lect. 1954;50:230–257. [PubMed] [Google Scholar]
  9. ERWIN J., BLOCH K. BIOSYNTHESIS OF UNSATURATED FATTY ACIDS IN MICROORGANISMS. Science. 1964 Mar 6;143(3610):1006–1012. doi: 10.1126/science.143.3610.1006. [DOI] [PubMed] [Google Scholar]
  10. FALK J. E., PORRA R. J., BROWN A., MOSS F., LARMINIE H. E. Effect of oxygen tension on haem and porphyrin biosynthesis. Nature. 1959 Oct 17;184:1217–1219. doi: 10.1038/1841217a0. [DOI] [PubMed] [Google Scholar]
  11. FULCO A. J., BLOCH K. COFACTOR REQUIREMENTS FOR THE FORMATION OF DELTA-9-UNSATURATED FATTY ACIDS IN MYCOBACTERIUM PHLEI. J Biol Chem. 1964 Apr;239:993–997. [PubMed] [Google Scholar]
  12. FULCO A. J., LEVY R., BLOCH K. THE BIOSYNTHESIS OF DELTA-9 AND DELTA-5-MONOSATURATED FATTY ACIDS BY BACTERIA. J Biol Chem. 1964 Apr;239:998–1003. [PubMed] [Google Scholar]
  13. Falk J. E., Porra R. J. The effects of oxygen concentration on porphyrin biosynthesis in chicken-erythrocyte preparations. Biochem J. 1964 Jan;90(1):66–69. doi: 10.1042/bj0900066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. HAYAISHI O., ROTHBERG S., MEHLER A. H., SAITO Y. Studies on oxygenases; enzymatic formation of kynurenine from tryptophan. J Biol Chem. 1957 Dec;229(2):889–896. [PubMed] [Google Scholar]
  15. KAUFMAN S. THE STRUCTURE OF THE PHENYLALANINE-HYDROXYLATION COFACTOR. Proc Natl Acad Sci U S A. 1963 Dec;50:1085–1093. doi: 10.1073/pnas.50.6.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. KLEIN H. P. Synthesis of lipids in resting cells of Saccharomyces cerevisiae. J Bacteriol. 1955 Jun;69(6):620–627. doi: 10.1128/jb.69.6.620-627.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. KNOX W. E., MEHLER A. H. The conversion of tryptophan to kynurenine in liver. I. The coupled tryptophan peroxidase-oxidase system forming formylkynurenine. J Biol Chem. 1950 Nov;187(1):419–430. [PubMed] [Google Scholar]
  18. LENHOFF H. M., NICHOLAS D. J., KAPLAN N. O. Effects of oxygen, iron, and molybdenum on routes of electron transfer in Pseudomonas fluorescens. J Biol Chem. 1956 Jun;220(2):983–995. [PubMed] [Google Scholar]
  19. LESTER R. L., CRANE F. L. The natural occurrence of coenzyme Q and related compounds. J Biol Chem. 1959 Aug;234(8):2169–2175. [PubMed] [Google Scholar]
  20. MARSH J. B., JAMES A. T. The conversion of stearic to oleic acid by liver and yeast preparations. Biochim Biophys Acta. 1962 Jul 2;60:320–328. doi: 10.1016/0006-3002(62)90407-9. [DOI] [PubMed] [Google Scholar]
  21. MOSS F. Adaptation of the cytochromes of Aerobacter aerogenes in response to environmental oxygen tension. Aust J Exp Biol Med Sci. 1956 Oct;34(5):395–405. doi: 10.1038/icb.1956.48. [DOI] [PubMed] [Google Scholar]
  22. NORRIS A. T., MATSUMURA S., BLOCH K. FATTY ACID SYNTHETASE AND BETA-HYDROXYDECANOYL COENZYME A DEHYDRASE FROM ESCHERICHIA COLI. J Biol Chem. 1964 Nov;239:3653–3662. [PubMed] [Google Scholar]
  23. ORTEGA M. V., BROWN G. M. Precursors of nicotinic acid in Escherichia coli. J Biol Chem. 1960 Oct;235:2939–2945. [PubMed] [Google Scholar]
  24. PARSON W. W., RUDNEY H. THE BIOSYNTHESIS OF THE BENZOQUINONE RING OF UBIQUINONE FROM P-HYDROXYBENZALDEHYDE AND P-HYDROXYBENZOIC ACID IN RAT KIDNEY, AZOTOBACTER VINELANDII, AND BAKER'S YEAST. Proc Natl Acad Sci U S A. 1964 Mar;51:444–450. doi: 10.1073/pnas.51.3.444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. PORRA R. J., JONES O. T. Studies on ferrochelatase. 1. Assay and properties of ferrochelatase from a pig-liver mitochondrial extract. Biochem J. 1963 Apr;87:181–185. doi: 10.1042/bj0870181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. SANO S., GRANICK S. Mitochondrial coproporphyrinogen oxidase and protoporphyrin formation. J Biol Chem. 1961 Apr;236:1173–1180. [PubMed] [Google Scholar]
  27. SUGIMURA T., RUDNEY H. The adaptive formation of ubiquinone 30 (coenzyme Q6) in yeast. Biochim Biophys Acta. 1960 Jan 29;37:560–561. doi: 10.1016/0006-3002(60)90527-8. [DOI] [PubMed] [Google Scholar]
  28. Sano S., Nanzyo N., Rimington C. Synthesis of porphyrin c-type compounds from protoporphyrinogen. Biochem J. 1964 Nov;93(2):270–280. doi: 10.1042/bj0930270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Simpson K. L., Nakayama T. O., Chichester C. O. The biosynthetic origin of the carboxyl oxygen atoms of the carotenoid pigment, torularhodin. Biochem J. 1964 Sep;92(3):508–510. doi: 10.1042/bj0920508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. TCHEN T. T., BLOCH K. On the conversion of squalene to lanosterol in vitro. J Biol Chem. 1957 Jun;226(2):921–930. [PubMed] [Google Scholar]
  31. TCHEN T. T., BLOCH K. On the mechanism of enzymatic cyclization of squalene. J Biol Chem. 1957 Jun;226(2):931–939. [PubMed] [Google Scholar]
  32. YANIV H., GILVARG C. Aromatic biosynthesis. XIV. 5-Dehydroshikimic reductase. J Biol Chem. 1955 Apr;213(2):787–795. [PubMed] [Google Scholar]
  33. YCAS M., DRABKIN D. L. The biosynthesis of cytochrome c in yeast adapting to oxygen. J Biol Chem. 1957 Feb;224(2):921–933. [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES