Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1965 Sep 1;49(1):75–103. doi: 10.1085/jgp.49.1.75

The Crystal-Solution Problem of Sperm Whale Myoglobin

Peter Urnes 1
PMCID: PMC2195474  PMID: 5859928

Abstract

The central question to be discussed in this paper is whether the structure established for sperm whale myoglobin in the crystalline state is the same as that of the protein in solution. As judged by its ultraviolet optical rotatory dispersion, the helical content of metmyoglobin in solution does not differ from that in the crystal, 77 per cent. Although an uncertainty of about ±5 per cent must attach to this result, it excludes many alternative arrangements of the polypeptide chain. The folding of the chain may be further restricted to the basic form seen in the crystal if the dimensions of the molecule in solution and the interactions of specific chemical groups are taken into account. Since the rotatory dispersion of metmyoglobin is constant with respect to ionic strength, and since the dispersions of reduced and oxymyoglobin reveal no change in helical content upon their formation from metmyoglobin, one may infer that the structure of the protein is largely maintained both as it dissolves and during its reversible combination with oxygen. The crystallographic model of myoglobin thus offers a structural basis for attempting to explain its physiological function in solution. The relevance of this conclusion to the crystal-solution problems presented by other species of protein is then best seen in the light of common factors that govern the equilibrium of all proteins between crystal and solution.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BANASZAK L. J., ANDREWS P. A., BURGNER J. W., EYLAR E. H., GURD F. R. CARBOXYMETHYLATION OF SPERM WHALE METMYOGLOBIN. J Biol Chem. 1963 Oct;238:3307–3314. [PubMed] [Google Scholar]
  2. BEYCHOK S., DE LOZE C., BLOUT E. R. Helix contents of solutions of native and acid-denatured ferrihemoglobin and ferrimyoglobin. J Mol Biol. 1962 Jun;4:421–429. doi: 10.1016/s0022-2836(62)80099-0. [DOI] [PubMed] [Google Scholar]
  3. BRESLOW E., GURD F. R. Reactivity of sperm whale metmyoglobin towards hydrogen ions and p-nitrophenyl acetate. J Biol Chem. 1962 Feb;237:371–381. [PubMed] [Google Scholar]
  4. DEUTSCH K. ELECTRON MICROSCOPE EXAMINATION OF MYOGLOBIN. Nature. 1963 Jul 13;199:180–181. doi: 10.1038/199180a0. [DOI] [PubMed] [Google Scholar]
  5. Gratzer W. B., Holzwarth G. M., Doty P. POLARIZATION OF THE ULTRAVIOLET ABSORPTION BANDS IN alpha-HELICAL POLYPEPTIDES. Proc Natl Acad Sci U S A. 1961 Nov;47(11):1785–1791. doi: 10.1073/pnas.47.11.1785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. HERMANS J., Jr Normal and abnormal tyrosine side-chains in various heme proteins. Biochemistry. 1962 Mar;1:193–196. doi: 10.1021/bi00908a001. [DOI] [PubMed] [Google Scholar]
  7. HOLZWARTH G., DOTY P. THE ULTRAVIOLET CIRCULAR DICHROISM OF POLYPEPTIDES. J Am Chem Soc. 1965 Jan 20;87:218–228. doi: 10.1021/ja01080a015. [DOI] [PubMed] [Google Scholar]
  8. KENDREW J. C. Side-chain interactions in myoglobin. Brookhaven Symp Biol. 1962 Dec;15:216–228. [PubMed] [Google Scholar]
  9. KENDREW J. C., WATSON H. C., STRANDBERG B. E., DICKERSON R. E., PHILLIPS D. C., SHORE V. C. The amino-acid sequence x-ray methods, and its correlation with chemical data. Nature. 1961 May 20;190:666–670. doi: 10.1038/190666a0. [DOI] [PubMed] [Google Scholar]
  10. LEONARD W. J., Jr, FOSTER J. F. INFLUENCE OF HELIX CONTENT AND SOLVENT ENVIRONMENT ON THE OPTICAL ROTATORY DISPERSION PARAMETERS OF POLYPEPTIDES. J Mol Biol. 1963 Nov;7:590–598. doi: 10.1016/s0022-2836(63)80105-9. [DOI] [PubMed] [Google Scholar]
  11. LUZZATI V., CESARI M., SPACH G., MASSON F., VINCENT J. M. [The structure of L-poly-gamma-benzyl glutamate in solution. Configuration of a helix different from helix alpha and transitions between helical forms]. J Mol Biol. 1961 Oct;3:566–584. doi: 10.1016/s0022-2836(61)80022-3. [DOI] [PubMed] [Google Scholar]
  12. Moffitt W., Yang J. T. THE OPTICAL ROTATORY DISPERSION OF SIMPLE POLYPEPTIDES. I. Proc Natl Acad Sci U S A. 1956 Sep;42(9):596–603. doi: 10.1073/pnas.42.9.596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. PERUTZ M. F., BOLTON W., DIAMOND R., MUIRHEAD H., WATSON H. C. STRUCTURE OF HAEMOGLOBIN. AN X-RAY EXAMINATION OF REDUCED HORSE HAEMOGLOBIN. Nature. 1964 Aug 15;203:687–690. doi: 10.1038/203687a0. [DOI] [PubMed] [Google Scholar]
  14. ROSENHECK K., DOTY P. The far ultraviolet absorption spectra of polypeptide and protein solutions and their dependence on conformation. Proc Natl Acad Sci U S A. 1961 Nov 15;47:1775–1785. doi: 10.1073/pnas.47.11.1775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. SAMEJIMA T., YANG J. T. OPTICAL ROTATORY DISPERSION OF SPERM-WHALE MYOGLOBIN AND ITS DERIVATIVES. J Mol Biol. 1964 Jun;8:863–871. doi: 10.1016/s0022-2836(64)80167-4. [DOI] [PubMed] [Google Scholar]
  16. SMITH E. L. Active site and structure of crystalline papain. Fed Proc. 1957 Sep;16(3):801–809. [PubMed] [Google Scholar]
  17. SOGAMI M., LEONARD W. J., Jr, FOSTER J. F. Statistical evaluation of the rotatory dispersion parameters for helical polymers and proteins: two proposed methods and their application to data on polyglutamic acid and plasma albumin. Arch Biochem Biophys. 1963 Feb;100:260–269. doi: 10.1016/0003-9861(63)90070-5. [DOI] [PubMed] [Google Scholar]
  18. URNES P. J., IMAHORI K., DOTY P. The optical rotatory dispersion of right-handed alpha-helices in sperm whale myoglobin. Proc Natl Acad Sci U S A. 1961 Oct 15;47:1635–1641. doi: 10.1073/pnas.47.10.1635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. URNES P., DOTY P. Optical rotation and the conformation of polypeptides and proteins. Adv Protein Chem. 1961;16:401–544. doi: 10.1016/s0065-3233(08)60033-9. [DOI] [PubMed] [Google Scholar]
  20. URNES P., DOTY P. Optical rotation and the conformation of polypeptides and proteins. Adv Protein Chem. 1961;16:401–544. doi: 10.1016/s0065-3233(08)60033-9. [DOI] [PubMed] [Google Scholar]
  21. YANG J. T., SAMEJIMA T. OPTICAL ROTATORY DISPERSION OF CATALASE. J Biol Chem. 1963 Oct;238:3262–3267. [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES