Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1965 Nov 1;49(2):221–234. doi: 10.1085/jgp.49.2.221

Cation Transport in Escherichia coli

V. Regulation of cation content

Wolfgang Epstein 1, Stanley G Schultz 1
PMCID: PMC2195484  PMID: 19873561

Abstract

Measurement of cellular K and Na concentrations in growing Escherichia coli indicates that the osmololity of the medium is a major determinant of the cell K concentration. In contrast, the cell Na concentration is independent of the medium osmolality and is largely dependent on the Na concentration of the medium. Sudden changes in the osmolality of the medium lead to rapid changes in K content. Washing the cells with solutions of lower osmolality results in a very rapid loss of K, which is greater in more dilute and in cold solutions. A sudden increase in the osmolality of the growth medium produces a rapid uptake of K by a mechanism whose rate is a saturable function of the K concentration of the medium and which appears to involve an exchange of K for cellular H.

Full Text

The Full Text of this article is available as a PDF (863.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRITTEN R. J., McCLURE F. T. The amino acid pool in Escherichia coli. Bacteriol Rev. 1962 Sep;26:292–335. doi: 10.1128/br.26.3.292-335.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. KESSEL D., LUBIN M. Transport of proline in Escherichia coli. Biochim Biophys Acta. 1962 Feb 12;57:32–43. doi: 10.1016/0006-3002(62)91074-0. [DOI] [PubMed] [Google Scholar]
  3. King E. J. The colorimetric determination of phosphorus. Biochem J. 1932;26(2):292–297. doi: 10.1042/bj0260292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. MITCHELL P., MOYLE J. The Gram reaction and cell composition: nucleic acids and other phosphate fractions. J Gen Microbiol. 1954 Jun;10(3):533–540. doi: 10.1099/00221287-10-3-533. [DOI] [PubMed] [Google Scholar]
  5. SCHULTZ S. G., EPSTEIN W., GOLDSTEIN D. A. Cation transport in Escherichia coli. III. Potassium fluxes in the steadystate. J Gen Physiol. 1962 Nov;46:343–353. doi: 10.1085/jgp.46.2.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. SCHULTZ S. G., EPSTEIN W., SOLOMON A. K. CATION TRANSPORT IN ESCHERICHIA COLI. IV. KINETICS OF NET K UPTAKE. J Gen Physiol. 1963 Nov;47:329–346. doi: 10.1085/jgp.47.2.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. SCHULTZ S. G., SOLOMON A. K. Cation transport in Escherichia coli. I. Intracellular Na and K concentrations and net cation movement. J Gen Physiol. 1961 Nov;45:355–369. doi: 10.1085/jgp.45.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. STRANGE R. E., DARK F. A. Effect of chilling on Aerobacter aerogenes in aqueous suspension. J Gen Microbiol. 1962 Dec;29:719–730. doi: 10.1099/00221287-29-4-719. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES