Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1966 Mar 1;49(4):613–628. doi: 10.1085/jgp.49.4.613

Behavior of Delayed Current under Voltage Clamp in the Supramedullary Neurons of Puffer

Shigehiro Nakajima 1, Kiyoshi Kusano 1
PMCID: PMC2195503  PMID: 5943604

Abstract

Depolarizations applied to voltage-clamped cells bathed in the normal solution disclose an initial inward current followed by a delayed outward current. The maximum slope conductance for the peak initial current is about 30 times the leak conductance, but the maximum slope conductance for the delayed current is only about 10 times the leak conductance. During depolarizations for as long as 30 sec, the outward current does not maintain a steady level, but declines first exponentially with a time constant of about 6 msec; it then tends to increase for the next few seconds; finally, it declines slowly with a half-time of about 5 sec. Concomitant with the changes of the outward current, the membrane conductance changes, although virtually no change in electromotive force occurs. Thus, the changes in the membrane conductance represent two phases of K inactivation, one rapidly developing, the other slowly occurring, and a phase of K reactivation, which is interposed between the two inactivations. In isosmotic KCl solution after a conditioning hyperpolarization there occurs an increase in K permeability upon depolarization. When the depolarizations are maintained, the increase of K permeability undergoes changes similar to those observed in the normal medium. The significance of the K inactivation is discussed in relation to the after-potential of the nerve cells.

Full Text

The Full Text of this article is available as a PDF (910.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARAKI T., TERZUOLO C. A. Membrane currents in spinal motoneurons associated with the action potential and synaptic activity. J Neurophysiol. 1962 Nov;25:772–789. doi: 10.1152/jn.1962.25.6.772. [DOI] [PubMed] [Google Scholar]
  2. BELTON P., GRUNDFEST H. Potassium activation and K spikes in muscle fibers of the mealworm Iarva (Tenebrio molitor). Am J Physiol. 1962 Sep;203:588–594. doi: 10.1152/ajplegacy.1962.203.3.588. [DOI] [PubMed] [Google Scholar]
  3. BENNETT M. V., CRAIN S. M., GRUNDFEST H. Electrophysiology of supramedullary neurons in Spheroides maculatus. I. Orthodromic and antidromic responses. J Gen Physiol. 1959 Sep;43:159–188. doi: 10.1085/jgp.43.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BENNETT M. V., CRAIN S. M., GRUNDFEST H. Electrophysiology of supramedullary neurons in Spheroides maculatus. II. Properties of the electrically excitable membrane. J Gen Physiol. 1959 Sep;43:189–219. doi: 10.1085/jgp.43.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DODGE F. A., FRANKENHAEUSER B. Sodium currents in the myelinated nerve fibre of Xenopus laevis investigated with the voltage clamp technique. J Physiol. 1959 Oct;148:188–200. doi: 10.1113/jphysiol.1959.sp006281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. FRANKENHAEUSER B., WALTMAN B. Membrane resistance and conduction velocity of large myelinated nerve fibres from Xenopus laevis. J Physiol. 1959 Oct;148:677–682. doi: 10.1113/jphysiol.1959.sp006317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. GRUNDFEST H. Ionic mechanisms in electrogenesis. Ann N Y Acad Sci. 1961 Sep 6;94:405–457. doi: 10.1111/j.1749-6632.1961.tb35554.x. [DOI] [PubMed] [Google Scholar]
  8. HAGIWARA S., KUSANO K., SAITO N. Membrane changes of Onchidium nerve cell in potassium-rich media. J Physiol. 1961 Mar;155:470–489. doi: 10.1113/jphysiol.1961.sp006640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HAGIWARA S., SAITO N. Membrane potential change and membrane current in supramedullary nerve cell of puffer. J Neurophysiol. 1959 Mar;22(2):204–221. doi: 10.1152/jn.1959.22.2.204. [DOI] [PubMed] [Google Scholar]
  10. HAGIWARA S., SAITO N. Voltage-current relations in nerve cell membrane of Onchidium verruculatum. J Physiol. 1959 Oct;148:161–179. doi: 10.1113/jphysiol.1959.sp006279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HODGKIN A. L., HUXLEY A. F., KATZ B. Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J Physiol. 1952 Apr;116(4):424–448. doi: 10.1113/jphysiol.1952.sp004716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. JULIAN F. J., MOORE J. W., GOLDMAN D. E. Current-voltage relations in the lobster giant axon membrane under voltage clamp conditions. J Gen Physiol. 1962 Jul;45:1217–1238. doi: 10.1085/jgp.45.6.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. MEVES H. [The after-potentials of isolated medullated nerve fibers of the frog in tetanic stimulation]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1961;272:336–359. [PubMed] [Google Scholar]
  15. MOORE J. W. Excitation of the squid axon membrane in isosmotic potassium chloride. Nature. 1959 Jan 24;183(4656):265–266. doi: 10.1038/183265b0. [DOI] [PubMed] [Google Scholar]
  16. MUELLER P. Prolonged action potentials from single nodes of Ranvier. J Gen Physiol. 1958 Sep 20;42(1):137–162. doi: 10.1085/jgp.42.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. NAKAJIMA S., IWASAKI S., OBATA K. Delayed rectification and anomalous rectification in frog's skeletal muscle membrane. J Gen Physiol. 1962 Sep;46:97–115. doi: 10.1085/jgp.46.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. NAKAJIMA Y., PAPPAS G. D., BENNETT M. V. THE FINE STRUCTURE OF THE SUPRAMEDULLARY NEURONS OF THE PUFFER WITH SPECIAL REFERENCE TO ENDOCELLULAR AND PERICELLULAR CAPILLARIES. Am J Anat. 1965 May;116:471–491. doi: 10.1002/aja.1001160303. [DOI] [PubMed] [Google Scholar]
  19. NAKAMURA Y., NAKAJIMA S., GRUNDFEST H. EEL ELECTROPLAQUES: SPIKE ELECTROGENESIS WITHOUT POTASSIUM ACTIVATION. Science. 1964 Oct 9;146(3641):266–268. doi: 10.1126/science.146.3641.266. [DOI] [PubMed] [Google Scholar]
  20. Nakajima S. Analysis of K inactivation and TEA action in the supramedullary cells of puffer. J Gen Physiol. 1966 Mar;49(4):629–640. doi: 10.1085/jgp.49.4.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. OOYAMA H., WRIGHT E. B. Activity of potassium mechanism in single Ranvier node during excitation. J Neurophysiol. 1962 Jan;25:67–93. doi: 10.1152/jn.1962.25.1.67. [DOI] [PubMed] [Google Scholar]
  22. RALL W. Membrane potential transients and membrane time constant of motoneurons. Exp Neurol. 1960 Oct;2:503–532. doi: 10.1016/0014-4886(60)90029-7. [DOI] [PubMed] [Google Scholar]
  23. REUBEN J. P., WERMAN R., GRUNDFEST H. The ionic mechanisms of hyperpolarizing responses in lobster muscle fibers. J Gen Physiol. 1961 Nov;45:243–265. doi: 10.1085/jgp.45.2.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. TASAKI I. Demonstration of two stable states of the nerve membrane in potassium-rich media. J Physiol. 1959 Oct;148:306–331. doi: 10.1113/jphysiol.1959.sp006290. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES