Abstract
The reflection coefficient was originally introduced by Staverman to describe the movement of nonelectrolytes through membranes. When this coefficient is extended to salts, one has a choice of defining this term for the whole salt moving as a single electrically neutral component or for the individual ions of the salt. The latter definition is meaningful only in the absence of an electric field across the permeability barrier. This condition may be achieved with the voltage clamp or short-circuit technique and is especially useful in dealing with biological systems in which one rarely has only a single salt or even equal concentrations of the major anion and cation. The relations between the transport coefficients for the salt and its individual ions are derived. The special conditions which may result in negative osmosis through a charged membrane in the presence of a salt are discussed.
Full Text
The Full Text of this article is available as a PDF (381.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- GRIM E., SOLLNER K. The contributions of normal and anomalous osmosis to the osmotic effects arising across charged membranes with solutions of electrolytes. J Gen Physiol. 1957 Jul 20;40(6):887–899. doi: 10.1085/jgp.40.6.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KEDEM O., KATCHALSKY A. A physical interpretation of the phenomenological coefficients of membrane permeability. J Gen Physiol. 1961 Sep;45:143–179. doi: 10.1085/jgp.45.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KEDEM O., KATCHALSKY A. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim Biophys Acta. 1958 Feb;27(2):229–246. doi: 10.1016/0006-3002(58)90330-5. [DOI] [PubMed] [Google Scholar]
- LEAF A., HAYS R. M. Permeability of the isolated toad bladder to solutes and its modification by vasopressin. J Gen Physiol. 1962 May;45:921–932. doi: 10.1085/jgp.45.5.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
- USSING H. H., ZERAHN K. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand. 1951 Aug 25;23(2-3):110–127. doi: 10.1111/j.1748-1716.1951.tb00800.x. [DOI] [PubMed] [Google Scholar]