Abstract
Voltage clamp studies with the squid giant axon have shown that changes in the external calcium concentration (Frankenhaeuser and Hodgkin, 1957) shift the sodium and potassium conductance versus membrane potential curves along the potential axis. Taylor (1959) found that procaine acts primarily by reducing the sodium and, to a lesser extent, the potassium conductances. Both procaine and increased calcium also delay the turning on of the sodium conductance mechanism. Calcium and procaine have similar effects on lobster giant axon. In addition, we have observed that the magnitude of the response to procaine is influenced by the external calcium concentration. Increasing external calcium tends to reduce the effectiveness of procaine in decreasing sodium conductance. Conversely, procaine is more effective in reducing the membrane conductance if external calcium is decreased. The amplitude of the nerve action potential reflects these conductance changes in that, for example, reductions in amplitude resulting from the addition of procaine to the medium are partially restored by increasing external calcium, as was first noted by Aceves and Machne (1963). These phenomena suggest that calcium and procaine compete with one another with respect to their actions on the membrane conductance mechanism. The fact that procaine and its analogues compete with calcium for binding to phospholipids in vitro (Feinstein, 1964) suggests that the concept of competitive binding to phospholipids may provide a useful model for interpreting these data.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ACEVES J., MACHNE X. The action of calcium and of local anesthetics on nerve cells, and their interaction during excitation. J Pharmacol Exp Ther. 1963 May;140:138–148. [PubMed] [Google Scholar]
- ADELMAN W. J., Jr, ADAMS J. Effects of calcium lack on action potential of motor axons of the lobster limb. J Gen Physiol. 1959 Jan 20;42(3):655–664. doi: 10.1085/jgp.42.3.655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ADELMAN W. J., TAYLOR R. E. Leakage current rectification in the squid giant axon. Nature. 1961 Jun 3;190:883–885. doi: 10.1038/190883a0. [DOI] [PubMed] [Google Scholar]
- BLOOM F. E., SCHOEPFLE G. M. Kinetics of procaine-acetyl-choline antagonism. Am J Physiol. 1963 Jan;204:73–76. doi: 10.1152/ajplegacy.1963.204.1.73. [DOI] [PubMed] [Google Scholar]
- DAVIS F. A., DETTBARN W. D. Depolarizing action of calciumion depletion on frog nerve and its inhibition by compounds acting on the acetylcholine system. Biochim Biophys Acta. 1962 Oct 8;63:349–357. doi: 10.1016/0006-3002(62)90098-7. [DOI] [PubMed] [Google Scholar]
- FEINSTEIN M. B. REACTION OF LOCAL ANESTHETICS WITH PHOSPHOLIPIDS. A POSSIBLE CHEMICAL BASIS FOR ANESTHESIA. J Gen Physiol. 1964 Nov;48:357–374. doi: 10.1085/jgp.48.2.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FRANKENHAEUSER B., MOORE L. E. THE SPECIFICITY OF THE INITIAL CURRENT IN MYELINATED NERVE FIBRES OF XENOPUS LAEVIS. VOLTAGE CLAMP EXPERIMENTS. J Physiol. 1963 Nov;169:438–444. doi: 10.1113/jphysiol.1963.sp007270. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FRANKENHAEUSER B. Steady state inactivation of sodium permeability in myelinated nerve fibres of Xenopus laevis. J Physiol. 1959 Oct;148:671–676. doi: 10.1113/jphysiol.1959.sp006316. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FRANKENHAEUSER B. The effect of calcium on the myelinated nerve fibre. J Physiol. 1957 Jul 11;137(2):245–260. doi: 10.1113/jphysiol.1957.sp005809. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., HUXLEY A. F. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J Physiol. 1952 Apr;116(4):497–506. doi: 10.1113/jphysiol.1952.sp004719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JULIAN F. J., MOORE J. W., GOLDMAN D. E. Current-voltage relations in the lobster giant axon membrane under voltage clamp conditions. J Gen Physiol. 1962 Jul;45:1217–1238. doi: 10.1085/jgp.45.6.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KIMIZUKA H., KOKETSU K. Binding of calcium ion to lecithin film. Nature. 1962 Dec 8;196:995–996. doi: 10.1038/196995b0. [DOI] [PubMed] [Google Scholar]
- KOKETSU K., KITAMURA R., TANAKA R. BINDING OF CALCIUM IONS TO CELL MEMBRANE ISOLATED FROM BULLFROG SKELETAL MUSCLE. Am J Physiol. 1964 Aug;207:509–512. doi: 10.1152/ajplegacy.1964.207.2.509. [DOI] [PubMed] [Google Scholar]
- ROBERTSON J. D. The molecular structure and contact relationships of cell membranes. Prog Biophys Mol Biol. 1960;10:343–418. [PubMed] [Google Scholar]
- ROJAS E., TOBIAS J. M. MEMBRANE MODEL: ASSOCIATION OF INORGANIC CATIONS WITH PHOSPHOLIPID MONOLAYERS. Biochim Biophys Acta. 1965 Mar 29;94:394–404. doi: 10.1016/0926-6585(65)90047-6. [DOI] [PubMed] [Google Scholar]
- ROOTS B. I., JOHNSTON P. V. LIPIDS OF ISOLATED NEURONS. Biochem J. 1965 Jan;94:61–63. doi: 10.1042/bj0940061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SHANES A. M. Electrochemical aspects of physiological and pharmacological action in excitable cells. I. The resting cell and its alteration by extrinsic factors. Pharmacol Rev. 1958 Mar;10(1):59–164. [PubMed] [Google Scholar]
- SHANES A. M., FREYGANG W. H., GRUNDFEST H., AMATNIEK E. Anesthetic and calcium action in the voltage-clamped squid giant axon. J Gen Physiol. 1959 Mar 20;42(4):793–802. doi: 10.1085/jgp.42.4.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
- STRAUB R. Der Einfluss von Lokalanesthetika auf ionenbedingte Ruhepotentioländerungen von markhaltigen Nervenfasern des Frosches. Arch Int Pharmacodyn Ther. 1956 Sep 1;107(3-4):414–430. [PubMed] [Google Scholar]
- TAYLOR R. E. Effect of procaine on electrical properties of squid axon membrane. Am J Physiol. 1959 May;196(5):1071–1078. doi: 10.1152/ajplegacy.1959.196.5.1071. [DOI] [PubMed] [Google Scholar]