Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1966 May 1;49(5):867–895. doi: 10.1085/jgp.49.5.867

Ionic Interconversion of Pacemaker and Nonpacemaker Cultured Chick Heart Cells

Nick Sperelakis 1, D Lehmkuhl 1
PMCID: PMC2195529  PMID: 4960139

Abstract

Trypsin-dispersed cells from hearts (ventricles) of 7 to 8 day chick embryos were cultured 3 to 21 days. The cells became attached to the culture dish and assembled into monolayer communities. By means of a bridge circuit, one microelectrode was used for simultaneously passing current and recording membrane potentials (Vm). The input resistance, calculated by the measured ΔVm for a known step of current, averaged 10 MΩ. Electrotonic depolarization of nonpacemaker cells had no effect on frequency of firing. Within 2 min after addition of Ba++ (5 to 10 mM) to the Tyrode bath, the cells became partially depolarized and quiescent nonpacemaker cells developed oscillations in Vm which led to action potentials. With time, the depolarization became nearly complete and the input resistance increased 2 to 10 times. During such sustained depolarizations, action potentials were no longer produced and often tiny oscillations were observed; however, large action potentials developed during hyperpolarizing pulses. Thus, the automaticity of the depolarized cell became apparent during artificial repolarization. Sr++ (5 to 10 mM) initially produced hyperpolarization and induced automaticity in quiescent nonpacemaker cells. Elevated [K+]o (20 to 30 mM) suppressed automaticity of pacemaker cells and decreased Rm concomitantly. Thus, Ba++ probably converts nonpacemaker cells into pacemaker cells independently of its depolarizing action. Ba++ may induce automaticity and depolarization by decreasing g K, and elevated [K+]o may depress automaticity by increasing g K. The data support the hypothesis that the level of g K determines whether a cell shall function as a pacemaker.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANTONI H., HERKEL K., FLECKENSTEIN A. DIE RESTITUTION DER AUTOMATISCHEN ERREGUNGSBILDUNG IN KALIUM-GELAEHMTEN SCHRITTMACHER-GEWEBEN DURCH ADRENALIN. ELEKTROPHYSIOLOGISCHE STUDIEN AM ISOLIERTEN SINUSKNOTEN (MEERSCHWEINCHEN, RHESUSAFFE) SOWIE AM PURKINJE-FADEN (RHESUSAFFE) Pflugers Arch Gesamte Physiol Menschen Tiere. 1963;277:633–649. [PubMed] [Google Scholar]
  2. BURNSTOCK G., PROSSER C. L. Delayed repolarization in smooth muscles. Proc Soc Exp Biol Med. 1960 Feb;103:269–270. doi: 10.3181/00379727-103-25484. [DOI] [PubMed] [Google Scholar]
  3. CARMELIET E. E. Chloride ions and the membrane potential of Purkinje fibres. J Physiol. 1961 Apr;156:375–388. doi: 10.1113/jphysiol.1961.sp006682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. FATT P., GINSBORG B. L. The ionic requirements for the production of action potentials in crustacean muscle fibres. J Physiol. 1958 Aug 6;142(3):516–543. doi: 10.1113/jphysiol.1958.sp006034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HODGKIN A. L., KATZ B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949 Mar 1;108(1):37–77. doi: 10.1113/jphysiol.1949.sp004310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. HOFFMAN B. F., SUCKLING E. E. Effect of several cations on transmembrane potentials of cardiac muscle. Am J Physiol. 1956 Aug;186(2):317–324. doi: 10.1152/ajplegacy.1956.186.2.317. [DOI] [PubMed] [Google Scholar]
  7. HUXLEY A. F. Ion movements during nerve activity. Ann N Y Acad Sci. 1959 Aug 28;81:221–246. doi: 10.1111/j.1749-6632.1959.tb49311.x. [DOI] [PubMed] [Google Scholar]
  8. LEHMKUHL D., SPERELAKIS N. TRANSMEMBRANE POTENTIALS OF TRYPSIN-DISPERSED CHICK HEART CELLS CULTURED IN VITRO. Am J Physiol. 1963 Dec;205:1213–1220. doi: 10.1152/ajplegacy.1963.205.6.1213. [DOI] [PubMed] [Google Scholar]
  9. Lehmkuhl D., Sperelakis N. Electrotonic spread of current in cultured chick heart cells. J Cell Physiol. 1965 Aug;66(1):119–133. doi: 10.1002/jcp.1030660113. [DOI] [PubMed] [Google Scholar]
  10. MASHIMA H., WASHIO H. THE EFFECT OF ZINC ON THE ELECTRICAL PROPERTIES OF MEMBRANE AND THE TWITCH TENSION IN FROG MUSCLE FIBRES. Jpn J Physiol. 1964 Oct 15;14:538–550. doi: 10.2170/jjphysiol.14.538. [DOI] [PubMed] [Google Scholar]
  11. MULLINS L. J. An analysis of pore size in excitable membranes. J Gen Physiol. 1960 May;43:105–117. doi: 10.1085/jgp.43.5.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. MULLINS L. J. The macromolecular properties of excitable membranes. Ann N Y Acad Sci. 1961 Sep 6;94:390–404. doi: 10.1111/j.1749-6632.1961.tb35553.x. [DOI] [PubMed] [Google Scholar]
  13. NISHI S., SOEDA H. HYPERPOLARIZATION OF A NEURONE MEMBRANE BY BARIUM. Nature. 1964 Nov 21;204:761–764. doi: 10.1038/204761a0. [DOI] [PubMed] [Google Scholar]
  14. SJODIN R. A., MULLINS L. J. Oscillatory behavior of the squid axon membrane potential. J Gen Physiol. 1958 Sep 20;42(1):39–47. doi: 10.1085/jgp.42.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. SPERELAKIS N., TARR M. WEAK ELECTRONIC INTERACTION BETWEEN NEIGHBORING VISCERAL SMOOTH MUSCLE CELLS. Am J Physiol. 1965 Apr;208:737–747. doi: 10.1152/ajplegacy.1965.208.4.737. [DOI] [PubMed] [Google Scholar]
  16. SUZUKI T., NISHIYAMA A., OKAMURA K. THE EFFECTS OF BARIUM ION ON THE RESTING AND ACTION POTENTIAL OF INTESTINAL SMOOTH MUSCLE CELL. Tohoku J Exp Med. 1964 Feb 25;82:87–92. doi: 10.1620/tjem.82.87. [DOI] [PubMed] [Google Scholar]
  17. Sperelakis N., Lehmkuhl D. Insensitivity of cultured chick heart cells to autonomic agents and tetrodotoxin. Am J Physiol. 1965 Oct;209(4):693–698. doi: 10.1152/ajplegacy.1965.209.4.693. [DOI] [PubMed] [Google Scholar]
  18. TASAKI I. Resting and action potentials of reversed polarity in frog nerve cells. Nature. 1959 Nov 14;184(Suppl 20):1574–1575. doi: 10.1038/1841574a0. [DOI] [PubMed] [Google Scholar]
  19. TRAUTWEIN W. Generation and conduction of impulses in the heart as affected by drugs. Pharmacol Rev. 1963 Jun;15:277–332. [PubMed] [Google Scholar]
  20. TRAUTWEIN W., KASSEBAUM D. G. On the mechanism of spontaneous impulse generation in the pacemaker of the heart. J Gen Physiol. 1961 Nov;45:317–330. doi: 10.1085/jgp.45.2.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. VASSALLE M. CARDIAC PACEMAKER POTENTIALS AT DIFFERENT EXTRA-AND INTRACELLULAR K CONCENTRATIONS. Am J Physiol. 1965 Apr;208:770–775. doi: 10.1152/ajplegacy.1965.208.4.770. [DOI] [PubMed] [Google Scholar]
  22. VASSALLE M., GREENSPAN K., JOMAIN S., HOFFMAN B. F. EFFECTS OF POTASSIUM ON AUTOMATICITY AND CONDUCTION OF CANINE HEARTS. Am J Physiol. 1964 Aug;207:334–340. doi: 10.1152/ajplegacy.1964.207.2.334. [DOI] [PubMed] [Google Scholar]
  23. WEIDMANN S. Effect of current flow on the membrane potential of cardiac muscle. J Physiol. 1951 Oct 29;115(2):227–236. doi: 10.1113/jphysiol.1951.sp004667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. WEIDMANN S. Effects of calcium ions and local anesthetics on electrical properties of Purkinje fibres. J Physiol. 1955 Sep 28;129(3):568–582. doi: 10.1113/jphysiol.1955.sp005379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. de MELLO W., HOFFMAN B. F. Potassium ions and electrical activity of specialized cardiac fibers. Am J Physiol. 1960 Dec;199:1125–1130. doi: 10.1152/ajplegacy.1960.199.6.1125. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES