Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1966 Jul 1;49(6):127–142. doi: 10.1085/jgp.49.6.127

Some Properties of DNA from Phage-Infected Bacteria

M G Smith 1, A Skalka 1
PMCID: PMC2195539  PMID: 5338559

Abstract

Replicating T5 or λ phage DNA has been labeled by adding tritiated thymidine for short periods to cultures of phage-infected Escherichia coli before isolation of intracellular DNA. Two procedures are described for separating T5 replicating DNA from DNA of intracellular phage particles. Both T5 and λ replicating DNA had the same bouyant density in cesium chloride as DNA from phage particles but sedimented faster when centrifuged in sucrose density gradients. The fast sedimentation did not appear to be caused by DNA protein or DNA-RNA complexes or by aggregation of DNA, but is probably due to DNA molecules of unusual structure. Experiments involving hydrodynamic shear and sucrose density gradient centrifugation at alkaline pH have suggested that with λ the replicating form of DNA is a linear molecule considerably longer than the DNA molecules of λ-phage particles. The constituent polynucleotide chains of λ but not T5 replicating DNA also appear to be longer than those of phage DNA.

Full Text

The Full Text of this article is available as a PDF (811.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURGI E., HERSHEY A. D. Sedimentation rate as a measure of molecular weight of DNA. Biophys J. 1963 Jul;3:309–321. doi: 10.1016/s0006-3495(63)86823-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bode V. C., Kaiser A. D. Changes in the structure and activity of lambda DNA in a superinfected immune bacterium. J Mol Biol. 1965 Dec;14(2):399–417. doi: 10.1016/s0022-2836(65)80190-5. [DOI] [PubMed] [Google Scholar]
  3. COWIE D. B., HERSHEY A. D. MULTIPLE SITES OF INTERACTION WITH HOST-CELL DNA IN THE DNA OF PHAGE LAMBDA. Proc Natl Acad Sci U S A. 1965 Jan;53:57–62. doi: 10.1073/pnas.53.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CRAWFORD L. V. Nucleic acid metabolism in Escherichia coli infected with phage T5. Virology. 1959 Apr;7(4):359–374. doi: 10.1016/0042-6822(59)90065-0. [DOI] [PubMed] [Google Scholar]
  5. HERSHEY A. D. Nucleic acid economy in bacteria infected with bacteriophage T2. J Gen Physiol. 1953 Sep;37(1):1–23. doi: 10.1085/jgp.37.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hershey A. D., Burgi E., Ingraham L. COHESION OF DNA MOLECULES ISOLATED FROM PHAGE LAMBDA. Proc Natl Acad Sci U S A. 1963 May;49(5):748–755. doi: 10.1073/pnas.49.5.748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. KELLENBERGER E., SECHAUD J., RYTER A. Electron microscopical studies of phage multiplication. IV. The establishment of the DNA pool of vegetative phage and the maturation of phage particles. Virology. 1959 Aug;8:478–498. doi: 10.1016/0042-6822(59)90050-9. [DOI] [PubMed] [Google Scholar]
  8. Kozinski A. W., Kozinski P. B. Early intracellular events in the replication T4 phage DNA. II. Partially replicated DNA. Proc Natl Acad Sci U S A. 1965 Aug;54(2):634–640. doi: 10.1073/pnas.54.2.634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kozinski A. W., Lin T. H. Early intracellular events in the replication of T4 phage DNA. I. Complex formation of replicative DNA. Proc Natl Acad Sci U S A. 1965 Jul;54(1):273–278. doi: 10.1073/pnas.54.1.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. MACHATTIE L. A., THOMAS C. A., Jr DNA FROM BACTERIOPHAGE LAMBDA: MOLECULAR LENGTH AND CONFORMATION. Science. 1964 May 29;144(3622):1142–1144. doi: 10.1126/science.144.3622.1142. [DOI] [PubMed] [Google Scholar]
  11. PFEFFERKORN E., AMOS H. Deoxyribonucleic acid breakdown and resynthesis in T5 bacteriophage infection. Virology. 1958 Aug;6(1):299–301. doi: 10.1016/0042-6822(58)90083-7. [DOI] [PubMed] [Google Scholar]
  12. Smith M. G., Burton K. Fractionation of deoxyribonucleic acid from phage-infected bacteria. Biochem J. 1966 Jan;98(1):229–241. doi: 10.1042/bj0980229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. VINOGRAD J., MORRIS J., DAVIDSON N., DOVE W. F., Jr The bouyant behavior of viral and bacterial DNA in alkaline CsCl. Proc Natl Acad Sci U S A. 1963 Jan 15;49:12–17. doi: 10.1073/pnas.49.1.12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. WEIDEL W., FRANK H., MARTIN H. H. The rigid layer of the cell wall of Escherichia coli strain B. J Gen Microbiol. 1960 Feb;22:158–166. doi: 10.1099/00221287-22-1-158. [DOI] [PubMed] [Google Scholar]
  15. YOUNG E. T., 2nd, SINSHEIMER R. L. NOVEL INTRA-CELLULAR FORMS OF LAMBDA DNA. J Mol Biol. 1964 Dec;10:562–564. doi: 10.1016/s0022-2836(64)80080-2. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES