Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1997 Mar 17;185(6):1149–1150.

Article

PMCID: PMC2196236

Due to a technical problem, the journal volumes in many of the references to the manuscript Bennett et al. (November 1996, 184:1845–1856) were incorrect. A complete and correct reference list follows.

References

  • 1.Trinchieri G. Biology of natural killer cells. Adv Immunol. 1989;47:187–376. doi: 10.1016/S0065-2776(08)60664-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Perussia B, Starr S, Abraham S, Fanning V, Trinchieri G. Human natural killer cells analyzed by B73.1, a monoclonal antibody blocking Fc receptor functions. I. Characterization of the lymphocyte subset reactive with B73.1. J Immunol. 1983;130:2133–2141. [PubMed] [Google Scholar]
  • 3.Scharton TM, Scott P. Natural killer cells are a source of interferon gamma that drives differentiation of CD4+ T cell subsets and induces early resistance to Leishmania majorin mice. J Exp Med. 1993;178:567–577. doi: 10.1084/jem.178.2.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Scharton-Kersten T, Scott P. The role of the innate immune response in Th1 cell development following Leishmania majorinfection. J Leukocyte Biol. 1995;57:515–522. doi: 10.1002/jlb.57.4.515. [DOI] [PubMed] [Google Scholar]
  • 5.Perussia B, Fanning V, Trinchieri G. A human NK and K cell subset shares with cytotoxic T cells expression of the antigen recognized by antibody OKT8. J Immunol. 1983;131:223–231. [PubMed] [Google Scholar]
  • 6.Lotzova E, Savary CA, Champlin RE. Genesis of human oncolytic natural killer cells from primitive CD34+ CD33−bone marrow progenitors. J Immunol. 1993;151:5263–5269. [PubMed] [Google Scholar]
  • 7.Miller JS, Alley KA, McGlave P. Differentiation of natural killer (NK) cells from human primitive marrow progenitors in a stroma-based long-term culture system: identification of a CD34+7+NK progenitor. Blood. 1994;83:2594–2601. [PubMed] [Google Scholar]
  • 8.Miller JS, Verfaillie C, McGlave P. The generation of human natural killer cells from CD34+/DR-primitive progenitors in long-term bone marrow culture. Blood. 1992;80:2182–2187. [PubMed] [Google Scholar]
  • 9.Shibuya A, Nagayoshi K, Nakamura K, Nakauchi H. Lymphokine requirement for the generation of natural killer cells from CD34+hematopoietic progenitor cells. Blood. 1995;85:3538–3546. [PubMed] [Google Scholar]
  • 10.Silva MR, Hoffman R, Srour EF, Ascensao JL. Generation of human natural killer cells from immature progenitors does not require marrow stromal cells. Blood. 1994;84:841–846. [PubMed] [Google Scholar]
  • 11.Mrozek E, Anderson P, Caligiuri MA. Role of interleukin-15 in the development of human CD56+ natural killer cells from CD34+hematopoietic progenitor cells. Blood. 1996;87:2632–2640. [PubMed] [Google Scholar]
  • 12.Cicuttini FM, Martin M, Petrie HT, Boyd AW. A novel population of natural killer progenitor cells isolated from human umbilical cord blood. J Immunol. 1993;150:29–37. [PubMed] [Google Scholar]
  • 13.Hackett J, Jr, Bennett M, Kumar V. Origin and differentiation of natural killer cells. I. Characteristics of a transplantable NK cell precursor. J Immunol. 1985;134:3731–3738. [PubMed] [Google Scholar]
  • 14.Moore T, Bennett M, Kumar V. Transplantable NK cell progenitors in murine bone marrow. J Immunol. 1995;154:1653–1663. [PubMed] [Google Scholar]
  • 15.Hackett J, Jr, Tutt M, Lipscomb M, Bennett M, Koo G, Kumar V. Origin and differentiation of natural killer cells. II. Functional and morphologic studies of purified NK-1.1+cells. J Immunol. 1986;136:3124–3131. [PubMed] [Google Scholar]
  • 16.Perussia B, Ramoni C, Anegon I, Cuturi M C, Faust J, Trinchieri G. Preferential proliferation of natural killer cells among peripheral blood mononuclear cells cocultured with B lymphoblastoid cell lines. Nat Immun Cell Growth Regul. 1987;6:171–188. [PubMed] [Google Scholar]
  • 17.Hoffman RA, Kung PC, Hansen WP, Goldstein G. Simple and rapid measurement of human T lymphocytes and their subclasses in peripheral blood. Proc Natl Acad Sci USA. 1980;77:4914–4917. doi: 10.1073/pnas.77.8.4914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Fingeroth JD, Weis JJ, Tedder TF, Strominger JL, Biro PA, Fearon DT. Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proc Natl Acad Sci USA. 1984;81:4510–4514. doi: 10.1073/pnas.81.14.4510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Civin CI, Strauss LC, Brovall C, Fackler MJ, Schwartz JF, Shaper JH. Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J Immunol. 1984;133:157–165. [PubMed] [Google Scholar]
  • 20.Aramburu J, Balboa MA, Ramirez A, Silva A, Acevedo A, Sanchez-Madrid F, De Landazuri MO, Lopez-Botet M. A novel functional cell surface dimer (Kp43) expressed by natural killer cells and T cell receptor-gamma/ delta+T lymphocytes. I. Inhibition of the IL-2-dependent proliferation by anti-Kp43 monoclonal antibody. J Immunol. 1990;145:3238–3247. [PubMed] [Google Scholar]
  • 21.Lanier LL, Chang C, Phillips JH. Human NKR-P1A. A disulfide-linked homodimer of the C-type lectin superfamily expressed by a subset of NK and T lymphocytes. J Immunol. 1994;153:2417–2428. [PubMed] [Google Scholar]
  • 22.Perussia B, Trinchieri G, Cerrottini JC. Functional studies of Fc receptor-bearing human lymphocytes: effect of treatment with proteolytic enzymes. J Immunol. 1979;123:681–687. [PubMed] [Google Scholar]
  • 23.Wysocki LJ, Sato VL. Panning for lymphocytes: a method for cell selection. Proc Natl Acad Sci USA. 1978;75:2844–2848. doi: 10.1073/pnas.75.6.2844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Toksoz D, Zsebo K, Smith K, Hu S, Brankow D, Suggs SV, Martin F, Williams DA. Support of human hematopoiesis in long-term bone marrow cultures by murine stromal cells selectively expressing the membranebound and secreted forms of the human homolog of the steel gene factor, stem cell factor. Proc Natl Acad Sci USA. 1992;89:7350–7354. doi: 10.1073/pnas.89.16.7350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Ravetch JV, Perussia B. Alternative membrane forms of Fc gamma RIII(CD16) on human natural killer cells and neutrophils. Cell type–specific expression of two genes that differ in single nucleotide substitutions. J Exp Med. 1989;170:481–497. doi: 10.1084/jem.170.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Uphoff CC, Hu ZB, Gignac SM, Ma W, Rainey FA, Kreutz M, Ludwig WD, Drexler HG. Characterization of the monocyte-specific esterase (MSE) gene. Leukemia. 1994;8:1510–1526. [PubMed] [Google Scholar]
  • 27.Tabor, S. 1996. Phosphatases and Kinases. In Current Protocols in Molecular Biology. F.M. Ausubel, R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, and K. Struhl, editors. John Wiley and Sons, Inc., New York. 3.10.1–3.10.5.
  • 28.Cuturi MC, Murphy M, Costa-Giomi MP, Weinmann R, Perussia B, Trinchieri G. Independent regulation of tumor necrosis factor and lymphotoxin production by human peripheral blood lymphocytes. J Exp Med. 1987;165:1581–1594. doi: 10.1084/jem.165.6.1581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Murphy M, Loudon R, Kobayashi M, Trinchieri G. Gamma interferon and lymphotoxin, released by activated T cells, synergize to inhibit granulocyte/monocyte colony formation. J Exp Med. 1986;164:263–279. doi: 10.1084/jem.164.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Anderson P, Nagler-Anderson C, O'Brien C, Levine H, Watkins S, Slayter H S, Blue M L, Schlossman S F. A monoclonal antibody reactive with a 15-kDa cytoplasmic granule-associated protein defines a subpopulation of CD8+T lymphocytes. J Immunol. 1990;144:574–582. [PubMed] [Google Scholar]
  • 31.Cassatella MA, Meda L, Gasperini S, D'Andrea A, Ma X, Trinchieri G. Interleukin-12 production by human polymorphonuclear leukocytes. Eur J Immunol. 1995;25:1–5. doi: 10.1002/eji.1830250102. [DOI] [PubMed] [Google Scholar]
  • 32.Koizumi H, Liu CC, Zheng LM, Joag SV, Bayne NK, Holoshitz J, Young JD. Expression of perforin and serine esterases by human gamma/delta T cells. J Exp Med. 1991;173:499–502. doi: 10.1084/jem.173.2.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Wagner L, Base W, Weisholzer M, Sexl V, Bognar H, Worman C. Detection of BLT-substrate-specific proteases in individual human peripheral blood leukocytes and bone marrow cells. J Immunol Methods. 1991;142:147–155. doi: 10.1016/0022-1759(91)90101-k. [DOI] [PubMed] [Google Scholar]
  • 34.Nagler A, Lanier LL, Cwirla S, Phillips JH. Comparative studies of human FcRIII-positive and negative natural killer cells. J Immunol. 1989;143:3183–3191. [PubMed] [Google Scholar]
  • 35.Trinchieri G, Matsumoto-Kobayashi M, Clark SC, Sheera J, London L, Perussia B. Response of resting human peripheral blood natural killer cells to interleukin 2. J Exp Med. 1984;160:1147–1169. doi: 10.1084/jem.160.4.1147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Matos ME, Schnier GS, Beecher MS, Ashman LK, William DE, Caligiuri MA. Expression of a functional c-kit receptor on a subset of natural killer cells. J Exp Med. 1993;178:1079–1084. doi: 10.1084/jem.178.3.1079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Fleit HB, Wright SD, Durie CJ, Valinsky JE, Unkeless JC. Ontogeny of Fc receptors and complement receptor (CR3) during human myeloid differentiation. J Clin Invest. 1984;73:516–525. doi: 10.1172/JCI111238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Phillips JH, Chang CW, Lanier LL. Plateletinduced expression of Fc gamma RIII (CD16) on human monocytes. Eur J Immunol. 1991;21:895–899. doi: 10.1002/eji.1830210406. [DOI] [PubMed] [Google Scholar]
  • 39.Miller JS, Delkers S, Verfaillie C, McGlave P. Role of monocytes in the expansion of human activated natural killer cells. Blood. 1992;80:2221–2229. [PubMed] [Google Scholar]
  • 40.Giorda R, Rudert WU, Vavassori C, Chambers WH, Hiserodt JC, Trucco M. NKR-P1, a signal transduction molecule on natural killer cells. Science (Wash DC) 1990;249:1298–1300. doi: 10.1126/science.2399464. [DOI] [PubMed] [Google Scholar]
  • 41.Bezouska K, Yuen CT, O'Brien J, Childs RA, Chai W, Lawson AM, Drbal K, Fiserova A, Pospisil M, Feizi T. Oligosaccharide ligands for NKR-P1 protein activate NK cells and cytotoxicity. Nature (Lond) 1994;372:150–157. doi: 10.1038/372150a0. [DOI] [PubMed] [Google Scholar]
  • 42.Bezouska K, Vlahas G, Horvath O, Jinochova G, Fiserova A, Giorda R, Chambers WH, Feizi T, Pospisil M. Rat natural killer cell antigen, NKR-P1, related to C-type animal lectins is a carbohydrate-binding protein. J Biol Chem. 1994;269:16945–16952. [PubMed] [Google Scholar]
  • 43.Robertson MJ, Caligiuri MA, Manley TJ, Levine H, Ritz J. Human natural killer cell adhesion molecules: differential expression after activation and participation in cytolysis. J Immunol. 1990;145:3194–3201. [PubMed] [Google Scholar]
  • 44.Schmits R, Kundig TM, Baker DM, Shumaker G, Simard JJL, Duncan G, Wakeham A, Shahinian A, van der Heiden A, Bachmann MF, Ohashi PS, et al. LFA- 1–deficient mice show normal CTL responses to virus but fail to reject immunogenic tumor. J Exp Med. 1996;183:1415–1426. doi: 10.1084/jem.183.4.1415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Ryan JC, Turck J, Niemi EC, Yokoyama WM, Seaman WE. Molecular cloning of the NK1.1 antigen, a member of the NKR-P1 family of natural killer cell activation molecules. J Immunol. 1992;149:1631–1635. [PubMed] [Google Scholar]
  • 46.Magram J, Connaughton SE, Warrier RR, Carvajal DM, Wu C, Ferrante J, Stewart C, Sarmiento U, Faherty DA, Gately MK. IL-12-deficient mice are defective in IFN-gamma production and type 1 cytokine responses. Immunity. 1996;4:471–481. doi: 10.1016/s1074-7613(00)80413-6. [DOI] [PubMed] [Google Scholar]
  • 47.Hirayama F, Katayama N, Neben S, Donaldson D, Nickbarg EB, Clark SC, Ogawa M. Synergistic interaction between interleukin-12 and steel factor in support of proliferation of murine lymphohematopoietic progenitors in culture. Blood. 1994;83:92–98. [PubMed] [Google Scholar]
  • 48.Jacobsen SE, Veiby OP, Smeland EB. Cytotoxic lymphocyte maturation factor (interleukin 12) is a synergistic growth factor for hematopoietic stem cells. J Exp Med. 1993;178:413–418. doi: 10.1084/jem.178.2.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Bennett IM, Perussia B. Effects of IL-12 on human natural killer cell differentiation. NY Acad Sci. 1997;795:181–188. doi: 10.1111/j.1749-6632.1996.tb52666.x. [DOI] [PubMed] [Google Scholar]
  • 50.Perussia B. Lymphokine-activated killer cells, natural killer cells and cytokines. Curr Opin Immunol. 1991;3:49–55. doi: 10.1016/0952-7915(91)90076-d. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES