Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1996 Feb 2;132(4):681–699. doi: 10.1083/jcb.132.4.681

Tenascin-C contains distinct adhesive, anti-adhesive, and neurite outgrowth promoting sites for neurons

PMCID: PMC2199878  PMID: 8647898

Abstract

The glia-derived extracellular matrix glycoprotein tenascin-C (TN-C) is transiently expressed in the developing CNS and may mediate neuron-glia interactions. Perturbation experiments with specific monoclonal antibodies suggested that TN-C functions for neural cells are encoded by distinct sites of the glycoprotein (Faissner, A., A. Scholze, and B. Gotz. 1994. Tenascin glycoproteins in developing neural tissues--only decoration? Persp. Dev. Neurobiol. 2:53-66). To characterize these further, bacterially expressed recombinant domains were generated and used for functional studies. Several short-term-binding sites for mouse CNS neurons could be assigned to the fibronectin type III (FNIII) domains. Of these, the alternatively spliced insert TNfnA1,2,4,B,D supported initial attachment for both embryonic day 18 (E18) rat and postnatal day 6 (P6) mouse neurons. Only TNfn1-3 supported binding and growth of P6 mouse cerebellar neurons after 24 h, whereas attachment to the other domains proved reversible and resulted in cell detachment or aggregation. In choice assays on patterned substrates, repulsive properties could be attributed to the EGF-type repeats TNegf, and to TNfnA1,2,4. Finally, neurite outgrowth promoting properties for E18 rat hippocampal neurons and P0 mouse DRG explants could be assigned to TNfnB,D, TNfnD,6, and TNfn6. The epitope of mAb J1/tn2 which abolishes the neurite outgrowth inducing effect of intact TN-C could be allocated to TNfnD. These observations suggest that TN-C harbors distinct cell- binding, repulsive, and neurite outgrowth promoting sites for neurons. Furthermore, the properties of isoform-specific TN-C domains suggest functional significance of the alternative splicing of TN-C glycoproteins.

Full Text

The Full Text of this article is available as a PDF (4.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aukhil I., Joshi P., Yan Y., Erickson H. P. Cell- and heparin-binding domains of the hexabrachion arm identified by tenascin expression proteins. J Biol Chem. 1993 Feb 5;268(4):2542–2553. [PubMed] [Google Scholar]
  2. Banker G. A., Cowan W. M. Rat hippocampal neurons in dispersed cell culture. Brain Res. 1977 May 13;126(3):397–342. doi: 10.1016/0006-8993(77)90594-7. [DOI] [PubMed] [Google Scholar]
  3. Barnea G., Grumet M., Milev P., Silvennoinen O., Levy J. B., Sap J., Schlessinger J. Receptor tyrosine phosphatase beta is expressed in the form of proteoglycan and binds to the extracellular matrix protein tenascin. J Biol Chem. 1994 May 20;269(20):14349–14352. [PubMed] [Google Scholar]
  4. Bartsch S., Bartsch U., Dörries U., Faissner A., Weller A., Ekblom P., Schachner M. Expression of tenascin in the developing and adult cerebellar cortex. J Neurosci. 1992 Mar;12(3):736–749. doi: 10.1523/JNEUROSCI.12-03-00736.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bottenstein J. E., Sato G. H. Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc Natl Acad Sci U S A. 1979 Jan;76(1):514–517. doi: 10.1073/pnas.76.1.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brodkey J. A., Laywell E. D., O'Brien T. F., Faissner A., Stefansson K., Dörries H. U., Schachner M., Steindler D. A. Focal brain injury and upregulation of a developmentally regulated extracellular matrix protein. J Neurosurg. 1995 Jan;82(1):106–112. doi: 10.3171/jns.1995.82.1.0106. [DOI] [PubMed] [Google Scholar]
  7. Brümmendorf T., Rathjen F. G. Axonal glycoproteins with immunoglobulin- and fibronectin type III-related domains in vertebrates: structural features, binding activities, and signal transduction. J Neurochem. 1993 Oct;61(4):1207–1219. doi: 10.1111/j.1471-4159.1993.tb13611.x. [DOI] [PubMed] [Google Scholar]
  8. Buettner H. M., Pittman R. N. Quantitative effects of laminin concentration on neurite outgrowth in vitro. Dev Biol. 1991 Jun;145(2):266–276. doi: 10.1016/0012-1606(91)90125-m. [DOI] [PubMed] [Google Scholar]
  9. Calof A. L., Lander A. D. Relationship between neuronal migration and cell-substratum adhesion: laminin and merosin promote olfactory neuronal migration but are anti-adhesive. J Cell Biol. 1991 Nov;115(3):779–794. doi: 10.1083/jcb.115.3.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chamak B., Prochiantz A. Influence of extracellular matrix proteins on the expression of neuronal polarity. Development. 1989 Jul;106(3):483–491. doi: 10.1242/dev.106.3.483. [DOI] [PubMed] [Google Scholar]
  11. Chiquet-Ehrismann R. Anti-adhesive molecules of the extracellular matrix. Curr Opin Cell Biol. 1991 Oct;3(5):800–804. doi: 10.1016/0955-0674(91)90053-2. [DOI] [PubMed] [Google Scholar]
  12. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  13. Chuong C. M., Crossin K. L., Edelman G. M. Sequential expression and differential function of multiple adhesion molecules during the formation of cerebellar cortical layers. J Cell Biol. 1987 Feb;104(2):331–342. doi: 10.1083/jcb.104.2.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Crossin K. L., Hoffman S., Tan S. S., Edelman G. M. Cytotactin and its proteoglycan ligand mark structural and functional boundaries in somatosensory cortex of the early postnatal mouse. Dev Biol. 1989 Dec;136(2):381–392. doi: 10.1016/0012-1606(89)90264-9. [DOI] [PubMed] [Google Scholar]
  15. Crossin K. L., Prieto A. L., Hoffman S., Jones F. S., Friedlander D. R. Expression of adhesion molecules and the establishment of boundaries during embryonic and neural development. Exp Neurol. 1990 Jul;109(1):6–18. doi: 10.1016/s0014-4886(05)80004-4. [DOI] [PubMed] [Google Scholar]
  16. Daniloff J. K., Crossin K. L., Pinçon-Raymond M., Murawsky M., Rieger F., Edelman G. M. Expression of cytotactin in the normal and regenerating neuromuscular system. J Cell Biol. 1989 Feb;108(2):625–635. doi: 10.1083/jcb.108.2.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Dodd J., Schuchardt A. Axon guidance: a compelling case for repelling growth cones. Cell. 1995 May 19;81(4):471–474. doi: 10.1016/0092-8674(95)90066-7. [DOI] [PubMed] [Google Scholar]
  18. Erickson H. P. Tenascin-C, tenascin-R and tenascin-X: a family of talented proteins in search of functions. Curr Opin Cell Biol. 1993 Oct;5(5):869–876. doi: 10.1016/0955-0674(93)90037-q. [DOI] [PubMed] [Google Scholar]
  19. Faissner A., Clement A., Lochter A., Streit A., Mandl C., Schachner M. Isolation of a neural chondroitin sulfate proteoglycan with neurite outgrowth promoting properties. J Cell Biol. 1994 Aug;126(3):783–799. doi: 10.1083/jcb.126.3.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Faissner A., Kruse J., Chiquet-Ehrismann R., Mackie E. The high-molecular-weight J1 glycoproteins are immunochemically related to tenascin. Differentiation. 1988;37(2):104–114. doi: 10.1111/j.1432-0436.1988.tb00802.x. [DOI] [PubMed] [Google Scholar]
  21. Faissner A., Kruse J. J1/tenascin is a repulsive substrate for central nervous system neurons. Neuron. 1990 Nov;5(5):627–637. doi: 10.1016/0896-6273(90)90217-4. [DOI] [PubMed] [Google Scholar]
  22. Faissner A., Kruse J., Kühn K., Schachner M. Binding of the J1 adhesion molecules to extracellular matrix constituents. J Neurochem. 1990 Mar;54(3):1004–1015. doi: 10.1111/j.1471-4159.1990.tb02350.x. [DOI] [PubMed] [Google Scholar]
  23. Faissner A., Scholze A., Götz B. Tenascin glycoproteins in developing neural tissues: only decoration? Perspect Dev Neurobiol. 1994;2(1):53–66. [PubMed] [Google Scholar]
  24. Faissner A., Steindler D. Boundaries and inhibitory molecules in developing neural tissues. Glia. 1995 Apr;13(4):233–254. doi: 10.1002/glia.440130402. [DOI] [PubMed] [Google Scholar]
  25. Faissner A. Tenascin glycoproteins in neural pattern formation: facets of a complex picture. Perspect Dev Neurobiol. 1993;1(3):155–164. [PubMed] [Google Scholar]
  26. Faissner A., Teplow D. B., Kübler D., Keilhauer G., Kinzel V., Schachner M. Biosynthesis and membrane topography of the neural cell adhesion molecule L1. EMBO J. 1985 Dec 1;4(12):3105–3113. doi: 10.1002/j.1460-2075.1985.tb04052.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Fischer G., Künemund V., Schachner M. Neurite outgrowth patterns in cerebellar microexplant cultures are affected by antibodies to the cell surface glycoprotein L1. J Neurosci. 1986 Feb;6(2):605–612. doi: 10.1523/JNEUROSCI.06-02-00605.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Friedlander D. R., Hoffman S., Edelman G. M. Functional mapping of cytotactin: proteolytic fragments active in cell-substrate adhesion. J Cell Biol. 1988 Dec;107(6 Pt 1):2329–2340. doi: 10.1083/jcb.107.6.2329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Gonzalez M. L., Silver J. Axon-glia interactions regulate ECM patterning in the postnatal rat olfactory bulb. J Neurosci. 1994 Oct;14(10):6121–6131. doi: 10.1523/JNEUROSCI.14-10-06121.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Grumet M., Hoffman S., Crossin K. L., Edelman G. M. Cytotactin, an extracellular matrix protein of neural and non-neural tissues that mediates glia-neuron interaction. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8075–8079. doi: 10.1073/pnas.82.23.8075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Grumet M., Milev P., Sakurai T., Karthikeyan L., Bourdon M., Margolis R. K., Margolis R. U. Interactions with tenascin and differential effects on cell adhesion of neurocan and phosphacan, two major chondroitin sulfate proteoglycans of nervous tissue. J Biol Chem. 1994 Apr 22;269(16):12142–12146. [PubMed] [Google Scholar]
  32. Halfter W., Chiquet-Ehrismann R., Tucker R. P. The effect of tenascin and embryonic basal lamina on the behavior and morphology of neural crest cells in vitro. Dev Biol. 1989 Mar;132(1):14–25. doi: 10.1016/0012-1606(89)90200-5. [DOI] [PubMed] [Google Scholar]
  33. Husmann K., Faissner A., Schachner M. Tenascin promotes cerebellar granule cell migration and neurite outgrowth by different domains in the fibronectin type III repeats. J Cell Biol. 1992 Mar;116(6):1475–1486. doi: 10.1083/jcb.116.6.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Hynes R. O., Lander A. D. Contact and adhesive specificities in the associations, migrations, and targeting of cells and axons. Cell. 1992 Jan 24;68(2):303–322. doi: 10.1016/0092-8674(92)90472-o. [DOI] [PubMed] [Google Scholar]
  35. Irintchev A., Salvini T. F., Faissner A., Wernig A. Differential expression of tenascin after denervation, damage or paralysis of mouse soleus muscle. J Neurocytol. 1993 Nov;22(11):955–965. doi: 10.1007/BF01218353. [DOI] [PubMed] [Google Scholar]
  36. Joshi P., Chung C. Y., Aukhil I., Erickson H. P. Endothelial cells adhere to the RGD domain and the fibrinogen-like terminal knob of tenascin. J Cell Sci. 1993 Sep;106(Pt 1):389–400. doi: 10.1242/jcs.106.1.389. [DOI] [PubMed] [Google Scholar]
  37. Julian J., Chiquet-Ehrismann R., Erickson H. P., Carson D. D. Tenascin is induced at implantation sites in the mouse uterus and interferes with epithelial cell adhesion. Development. 1994 Mar;120(3):661–671. doi: 10.1242/dev.120.3.661. [DOI] [PubMed] [Google Scholar]
  38. Kaplony A., Zimmermann D. R., Fischer R. W., Imhof B. A., Odermatt B. F., Winterhalter K. H., Vaughan L. Tenascin Mr 220,000 isoform expression correlates with corneal cell migration. Development. 1991 Jun;112(2):605–614. doi: 10.1242/dev.112.2.605. [DOI] [PubMed] [Google Scholar]
  39. Keilhauer G., Faissner A., Schachner M. Differential inhibition of neurone-neurone, neurone-astrocyte and astrocyte-astrocyte adhesion by L1, L2 and N-CAM antibodies. Nature. 1985 Aug 22;316(6030):728–730. doi: 10.1038/316728a0. [DOI] [PubMed] [Google Scholar]
  40. Keynes R. J., Cook G. M. Repellent cues in axon guidance. Curr Opin Neurobiol. 1992 Feb;2(1):55–59. doi: 10.1016/0959-4388(92)90162-e. [DOI] [PubMed] [Google Scholar]
  41. Krull C. E., Morton D. B., Faissner A., Schachner M., Tolbert L. P. Spatiotemporal pattern of expression of tenascin-like molecules in a developing insect olfactory system. J Neurobiol. 1994 May;25(5):515–534. doi: 10.1002/neu.480250506. [DOI] [PubMed] [Google Scholar]
  42. Krull C. E., Oland L. A., Faissner A., Schachner M., Tolbert L. P. In vitro analyses of neurite outgrowth indicate a potential role for tenascin-like molecules in the development of insect olfactory glomeruli. J Neurobiol. 1994 Aug;25(8):989–1004. doi: 10.1002/neu.480250808. [DOI] [PubMed] [Google Scholar]
  43. Kruse J., Keilhauer G., Faissner A., Timpl R., Schachner M. The J1 glycoprotein--a novel nervous system cell adhesion molecule of the L2/HNK-1 family. Nature. 1985 Jul 11;316(6024):146–148. doi: 10.1038/316146a0. [DOI] [PubMed] [Google Scholar]
  44. Künemund V., Jungalwala F. B., Fischer G., Chou D. K., Keilhauer G., Schachner M. The L2/HNK-1 carbohydrate of neural cell adhesion molecules is involved in cell interactions. J Cell Biol. 1988 Jan;106(1):213–223. doi: 10.1083/jcb.106.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  46. Lagenaur C., Lemmon V. An L1-like molecule, the 8D9 antigen, is a potent substrate for neurite extension. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7753–7757. doi: 10.1073/pnas.84.21.7753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Langenfeld-Oster B., Faissner A., Irintchev A., Wernig A. Polyclonal antibodies against NCAM and tenascin delay endplate reinnervation. J Neurocytol. 1994 Oct;23(10):591–604. doi: 10.1007/BF01191554. [DOI] [PubMed] [Google Scholar]
  48. Laywell E. D., Dörries U., Bartsch U., Faissner A., Schachner M., Steindler D. A. Enhanced expression of the developmentally regulated extracellular matrix molecule tenascin following adult brain injury. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2634–2638. doi: 10.1073/pnas.89.7.2634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Letourneau P. C., Condic M. L., Snow D. M. Interactions of developing neurons with the extracellular matrix. J Neurosci. 1994 Mar;14(3 Pt 1):915–928. doi: 10.1523/JNEUROSCI.14-03-00915.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Lochter A., Schachner M. Tenascin and extracellular matrix glycoproteins: from promotion to polarization of neurite growth in vitro. J Neurosci. 1993 Sep;13(9):3986–4000. doi: 10.1523/JNEUROSCI.13-09-03986.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Lochter A., Vaughan L., Kaplony A., Prochiantz A., Schachner M., Faissner A. J1/tenascin in substrate-bound and soluble form displays contrary effects on neurite outgrowth. J Cell Biol. 1991 Jun;113(5):1159–1171. doi: 10.1083/jcb.113.5.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Luo Y., Raible D., Raper J. A. Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell. 1993 Oct 22;75(2):217–227. doi: 10.1016/0092-8674(93)80064-l. [DOI] [PubMed] [Google Scholar]
  53. Luo Y., Raper J. A. Inhibitory factors controlling growth cone motility and guidance. Curr Opin Neurobiol. 1994 Oct;4(5):648–654. doi: 10.1016/0959-4388(94)90005-1. [DOI] [PubMed] [Google Scholar]
  54. Martini R., Schachner M., Faissner A. Enhanced expression of the extracellular matrix molecule J1/tenascin in the regenerating adult mouse sciatic nerve. J Neurocytol. 1990 Aug;19(4):601–616. doi: 10.1007/BF01257247. [DOI] [PubMed] [Google Scholar]
  55. Maurel P., Rauch U., Flad M., Margolis R. K., Margolis R. U. Phosphacan, a chondroitin sulfate proteoglycan of brain that interacts with neurons and neural cell-adhesion molecules, is an extracellular variant of a receptor-type protein tyrosine phosphatase. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2512–2516. doi: 10.1073/pnas.91.7.2512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Murphy-Ullrich J. E., Lightner V. A., Aukhil I., Yan Y. Z., Erickson H. P., Hök M. Focal adhesion integrity is downregulated by the alternatively spliced domain of human tenascin. J Cell Biol. 1991 Nov;115(4):1127–1136. doi: 10.1083/jcb.115.4.1127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Nörenberg U., Hubert M., Brümmendorf T., Tárnok A., Rathjen F. G. Characterization of functional domains of the tenascin-R (restrictin) polypeptide: cell attachment site, binding with F11, and enhancement of F11-mediated neurite outgrowth by tenascin-R. J Cell Biol. 1995 Jul;130(2):473–484. doi: 10.1083/jcb.130.2.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Perez R. G., Halfter W. Tenascin in the developing chick visual system: distribution and potential role as a modulator of retinal axon growth. Dev Biol. 1993 Mar;156(1):278–292. doi: 10.1006/dbio.1993.1076. [DOI] [PubMed] [Google Scholar]
  59. Pesheva P., Spiess E., Schachner M. J1-160 and J1-180 are oligodendrocyte-secreted nonpermissive substrates for cell adhesion. J Cell Biol. 1989 Oct;109(4 Pt 1):1765–1778. doi: 10.1083/jcb.109.4.1765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Prieto A. L., Andersson-Fisone C., Crossin K. L. Characterization of multiple adhesive and counteradhesive domains in the extracellular matrix protein cytotactin. J Cell Biol. 1992 Nov;119(3):663–678. doi: 10.1083/jcb.119.3.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Prieto A. L., Edelman G. M., Crossin K. L. Multiple integrins mediate cell attachment to cytotactin/tenascin. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10154–10158. doi: 10.1073/pnas.90.21.10154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Rakic P. Specification of cerebral cortical areas. Science. 1988 Jul 8;241(4862):170–176. doi: 10.1126/science.3291116. [DOI] [PubMed] [Google Scholar]
  63. Reichardt L. F., Tomaselli K. J. Extracellular matrix molecules and their receptors: functions in neural development. Annu Rev Neurosci. 1991;14:531–570. doi: 10.1146/annurev.ne.14.030191.002531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Rousselet A., Autillo-Touati A., Araud D., Prochiantz A. In vitro regulation of neuronal morphogenesis and polarity by astrocyte-derived factors. Dev Biol. 1990 Jan;137(1):33–45. doi: 10.1016/0012-1606(90)90005-4. [DOI] [PubMed] [Google Scholar]
  65. Rudolph R., Zettlmeissl G., Jaenicke R. Reconstitution of lactic dehydrogenase. Noncovalent aggregation vs. reactivation. 2. Reactivation of irreversibly denatured aggregates. Biochemistry. 1979 Dec 11;18(25):5572–5575. doi: 10.1021/bi00592a008. [DOI] [PubMed] [Google Scholar]
  66. Salacinski P. R., McLean C., Sykes J. E., Clement-Jones V. V., Lowry P. J. Iodination of proteins, glycoproteins, and peptides using a solid-phase oxidizing agent, 1,3,4,6-tetrachloro-3 alpha,6 alpha-diphenyl glycoluril (Iodogen). Anal Biochem. 1981 Oct;117(1):136–146. doi: 10.1016/0003-2697(81)90703-x. [DOI] [PubMed] [Google Scholar]
  67. Sanes J. R. Extracellular matrix molecules that influence neural development. Annu Rev Neurosci. 1989;12:491–516. doi: 10.1146/annurev.ne.12.030189.002423. [DOI] [PubMed] [Google Scholar]
  68. Schwab M. E., Kapfhammer J. P., Bandtlow C. E. Inhibitors of neurite growth. Annu Rev Neurosci. 1993;16:565–595. doi: 10.1146/annurev.ne.16.030193.003025. [DOI] [PubMed] [Google Scholar]
  69. Seilheimer B., Schachner M. Studies of adhesion molecules mediating interactions between cells of peripheral nervous system indicate a major role for L1 in mediating sensory neuron growth on Schwann cells in culture. J Cell Biol. 1988 Jul;107(1):341–351. doi: 10.1083/jcb.107.1.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Smith-Thomas L. C., Fok-Seang J., Stevens J., Du J. S., Muir E., Faissner A., Geller H. M., Rogers J. H., Fawcett J. W. An inhibitor of neurite outgrowth produced by astrocytes. J Cell Sci. 1994 Jun;107(Pt 6):1687–1695. doi: 10.1242/jcs.107.6.1687. [DOI] [PubMed] [Google Scholar]
  71. Spring J., Beck K., Chiquet-Ehrismann R. Two contrary functions of tenascin: dissection of the active sites by recombinant tenascin fragments. Cell. 1989 Oct 20;59(2):325–334. doi: 10.1016/0092-8674(89)90294-8. [DOI] [PubMed] [Google Scholar]
  72. Steindler D. A., Cooper N. G., Faissner A., Schachner M. Boundaries defined by adhesion molecules during development of the cerebral cortex: the J1/tenascin glycoprotein in the mouse somatosensory cortical barrel field. Dev Biol. 1989 Jan;131(1):243–260. doi: 10.1016/s0012-1606(89)80056-9. [DOI] [PubMed] [Google Scholar]
  73. Steindler D. A. Glial boundaries in the developing nervous system. Annu Rev Neurosci. 1993;16:445–470. doi: 10.1146/annurev.ne.16.030193.002305. [DOI] [PubMed] [Google Scholar]
  74. Taylor J., Pesheva P., Schachner M. Influence of janusin and tenascin on growth cone behavior in vitro. J Neurosci Res. 1993 Jul 1;35(4):347–362. doi: 10.1002/jnr.490350402. [DOI] [PubMed] [Google Scholar]
  75. Tessier-Lavigne M. Eph receptor tyrosine kinases, axon repulsion, and the development of topographic maps. Cell. 1995 Aug 11;82(3):345–348. doi: 10.1016/0092-8674(95)90421-2. [DOI] [PubMed] [Google Scholar]
  76. Trotter J., Bitter-Suermann D., Schachner M. Differentiation-regulated loss of the polysialylated embryonic form and expression of the different polypeptides of the neural cell adhesion molecule by cultured oligodendrocytes and myelin. J Neurosci Res. 1989 Apr;22(4):369–383. doi: 10.1002/jnr.490220402. [DOI] [PubMed] [Google Scholar]
  77. Varnum-Finney B., Venstrom K., Muller U., Kypta R., Backus C., Chiquet M., Reichardt L. F. The integrin receptor alpha 8 beta 1 mediates interactions of embryonic chick motor and sensory neurons with tenascin-C. Neuron. 1995 Jun;14(6):1213–1222. doi: 10.1016/0896-6273(95)90268-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Vaughan L., Weber P., D'Alessandri L., Zisch A. H., Winterhalter K. H. Tenascin-contactin/F11 interactions: a clue for a developmental role? Perspect Dev Neurobiol. 1994;2(1):43–52. [PubMed] [Google Scholar]
  79. Wehrle-Haller B., Chiquet M. Dual function of tenascin: simultaneous promotion of neurite growth and inhibition of glial migration. J Cell Sci. 1993 Oct;106(Pt 2):597–610. doi: 10.1242/jcs.106.2.597. [DOI] [PubMed] [Google Scholar]
  80. Wehrle B., Chiquet M. Tenascin is accumulated along developing peripheral nerves and allows neurite outgrowth in vitro. Development. 1990 Oct;110(2):401–415. doi: 10.1242/dev.110.2.401. [DOI] [PubMed] [Google Scholar]
  81. Weller A., Beck S., Ekblom P. Amino acid sequence of mouse tenascin and differential expression of two tenascin isoforms during embryogenesis. J Cell Biol. 1991 Jan;112(2):355–362. doi: 10.1083/jcb.112.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Zisch A. H., D'Alessandri L., Ranscht B., Falchetto R., Winterhalter K. H., Vaughan L. Neuronal cell adhesion molecule contactin/F11 binds to tenascin via its immunoglobulin-like domains. J Cell Biol. 1992 Oct;119(1):203–213. doi: 10.1083/jcb.119.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES