Abstract
The myosin light chain IF/3F locus contains two independent promoters, MLC1F and MLC3F, which are differentially activated during skeletal muscle development. Transcription at this locus is regulated by a 3' skeletal muscle enhancer element, which directs correct temporal and tissue-specific expression from the MLC1F promoter in transgenic mice. To investigate the role of this enhancer in regulation of the MLC3F promoter in vivo, we have analyzed reporter gene expression in transgenic mice containing lacZ under transcriptional control of the mouse MLC3F promoter and 3' enhancer element. Our results show that these regulatory elements direct strong expression of lacZ in skeletal muscle; the transgene, however, is activated 4-5 d before the endogenous MLC3F promoter, at the time of initiation of MLC1F transcription. In adult mice, transgene activity is downregulated in muscles that have reduced contributions of type IIB fibers (soleus and diaphragm). The rostrocaudal positional gradient of transgene expression documented for MLC1F transgenic mice (Donoghue, M., J. P. Merlie, N. Rosenthal, and J. R. Sanes. 1991. Proc. Natl. Acad. Sci. USA. 88:5847-5851) is not seen in MLC3F transgenic mice. Although MLC3F was previously thought to be restricted to skeletal striated muscle, the MLC3F-lacZ transgene is expressed in cardiac muscle from 7.5 d of development in a spatially restricted manner in the atria and left ventricular compartments, suggesting that transcriptional differences exist between cardiomyocytes in left and right compartments of the heart. We show here that transgene-directed expression of the MLC3F promoter reflects low level expression of endogenous MLC3F transcripts in the mouse heart.
Full Text
The Full Text of this article is available as a PDF (11.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Banerjee-Basu S., Buonanno A. cis-acting sequences of the rat troponin I slow gene confer tissue- and development-specific transcription in cultured muscle cells as well as fiber type specificity in transgenic mice. Mol Cell Biol. 1993 Nov;13(11):7019–7028. doi: 10.1128/mcb.13.11.7019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barton P. J., Buckingham M. E. The myosin alkali light chain proteins and their genes. Biochem J. 1985 Oct 15;231(2):249–261. doi: 10.1042/bj2310249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barton P. J., Cohen A., Robert B., Fiszman M. Y., Bonhomme F., Guénet J. L., Leader D. P., Buckingham M. E. The myosin alkali light chains of mouse ventricular and slow skeletal muscle are indistinguishable and are encoded by the same gene. J Biol Chem. 1985 Jul 15;260(14):8578–8584. [PubMed] [Google Scholar]
- Barton P. J., Harris A. J., Buckingham M. E. Myosin light chain gene expression in developing and denervated fetal muscle in the mouse. Development. 1989 Dec;107(4):819–824. doi: 10.1242/dev.107.4.819. [DOI] [PubMed] [Google Scholar]
- Barton P. J., Robert B., Fiszman M. Y., Leader D. P., Buckingham M. E. The same myosin alkali light chain gene is expressed in adult cardiac atria and in fetal skeletal muscle. J Muscle Res Cell Motil. 1985 Aug;6(4):461–475. doi: 10.1007/BF00712583. [DOI] [PubMed] [Google Scholar]
- Biben C., Kirschbaum B. J., Garner I., Buckingham M. Novel muscle-specific enhancer sequences upstream of the cardiac actin gene. Mol Cell Biol. 1994 May;14(5):3504–3513. doi: 10.1128/mcb.14.5.3504. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bottinelli R., Betto R., Schiaffino S., Reggiani C. Unloaded shortening velocity and myosin heavy chain and alkali light chain isoform composition in rat skeletal muscle fibres. J Physiol. 1994 Jul 15;478(Pt 2):341–349. doi: 10.1113/jphysiol.1994.sp020254. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brennan T. J., Edmondson D. G., Olson E. N. Aberrant regulation of MyoD1 contributes to the partially defective myogenic phenotype of BC3H1 cells. J Cell Biol. 1990 Apr;110(4):929–937. doi: 10.1083/jcb.110.4.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buckingham M. Making muscle in mammals. Trends Genet. 1992 Apr;8(4):144–148. doi: 10.1016/0168-9525(92)90373-C. [DOI] [PubMed] [Google Scholar]
- Cox R. D., Buckingham M. E. Actin and myosin genes are transcriptionally regulated during mouse skeletal muscle development. Dev Biol. 1992 Jan;149(1):228–234. doi: 10.1016/0012-1606(92)90279-p. [DOI] [PubMed] [Google Scholar]
- Daubas P., Klarsfeld A., Garner I., Pinset C., Cox R., Buckingham M. Functional activity of the two promoters of the myosin alkali light chain gene in primary muscle cell cultures: comparison with other muscle gene promoters and other culture systems. Nucleic Acids Res. 1988 Feb 25;16(4):1251–1271. doi: 10.1093/nar/16.4.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dillon N., Grosveld F. Transcriptional regulation of multigene loci: multilevel control. Trends Genet. 1993 Apr;9(4):134–137. doi: 10.1016/0168-9525(93)90208-y. [DOI] [PubMed] [Google Scholar]
- Donoghue M. J., Alvarez J. D., Merlie J. P., Sanes J. R. Fiber type- and position-dependent expression of a myosin light chain-CAT transgene detected with a novel histochemical stain for CAT. J Cell Biol. 1991 Oct;115(2):423–434. doi: 10.1083/jcb.115.2.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Donoghue M. J., Merlie J. P., Rosenthal N., Sanes J. R. Rostrocaudal gradient of transgene expression in adult skeletal muscle. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5847–5851. doi: 10.1073/pnas.88.13.5847. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Donoghue M. J., Morris-Valero R., Johnson Y. R., Merlie J. P., Sanes J. R. Mammalian muscle cells bear a cell-autonomous, heritable memory of their rostrocaudal position. Cell. 1992 Apr 3;69(1):67–77. doi: 10.1016/0092-8674(92)90119-w. [DOI] [PubMed] [Google Scholar]
- Donoghue M. J., Patton B. L., Sanes J. R., Merlie J. P. An axial gradient of transgene methylation in murine skeletal muscle: genomic imprint of rostrocaudal position. Development. 1992 Dec;116(4):1101–1112. doi: 10.1242/dev.116.4.1101. [DOI] [PubMed] [Google Scholar]
- Donoghue M., Ernst H., Wentworth B., Nadal-Ginard B., Rosenthal N. A muscle-specific enhancer is located at the 3' end of the myosin light-chain 1/3 gene locus. Genes Dev. 1988 Dec;2(12B):1779–1790. doi: 10.1101/gad.2.12b.1779. [DOI] [PubMed] [Google Scholar]
- Faerman A., Shani M. The expression of the regulatory myosin light chain 2 gene during mouse embryogenesis. Development. 1993 Jul;118(3):919–929. doi: 10.1242/dev.118.3.919. [DOI] [PubMed] [Google Scholar]
- Gardner D. G., Deschepper C. F., Ganong W. F., Hane S., Fiddes J., Baxter J. D., Lewicki J. Extra-atrial expression of the gene for atrial natriuretic factor. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6697–6701. doi: 10.1073/pnas.83.18.6697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garfinkel L. I., Davidson N. Developmentally regulated expression of a truncated myosin light-chain 1F/3F gene. Mol Cell Biol. 1987 Oct;7(10):3826–3829. doi: 10.1128/mcb.7.10.3826. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gauthier G. F., Lowey S., Benfield P. A., Hobbs A. W. Distribution and properties of myosin isozymes in developing avian and mammalian skeletal muscle fibers. J Cell Biol. 1982 Feb;92(2):471–484. doi: 10.1083/jcb.92.2.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gorza L., Ausoni S., Merciai N., Hastings K. E., Schiaffino S. Regional differences in troponin I isoform switching during rat heart development. Dev Biol. 1993 Mar;156(1):253–264. doi: 10.1006/dbio.1993.1074. [DOI] [PubMed] [Google Scholar]
- Grieshammer U., Sassoon D., Rosenthal N. A transgene target for positional regulators marks early rostrocaudal specification of myogenic lineages. Cell. 1992 Apr 3;69(1):79–93. doi: 10.1016/0092-8674(92)90120-2. [DOI] [PubMed] [Google Scholar]
- Gundersen K., Sanes J. R., Merlie J. P. Neural regulation of muscle acetylcholine receptor epsilon- and alpha-subunit gene promoters in transgenic mice. J Cell Biol. 1993 Dec;123(6 Pt 1):1535–1544. doi: 10.1083/jcb.123.6.1535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall Z. W., Sanes J. R. Synaptic structure and development: the neuromuscular junction. Cell. 1993 Jan;72 (Suppl):99–121. doi: 10.1016/s0092-8674(05)80031-5. [DOI] [PubMed] [Google Scholar]
- Hallauer P. L., Bradshaw H. L., Hastings K. E. Complex fiber-type-specific expression of fast skeletal muscle troponin I gene constructs in transgenic mice. Development. 1993 Nov;119(3):691–701. doi: 10.1242/dev.119.3.691. [DOI] [PubMed] [Google Scholar]
- Hoh J. F. Developmental changes in chicken skeletal myosin isoenzymes. FEBS Lett. 1979 Feb 15;98(2):267–270. doi: 10.1016/0014-5793(79)80197-0. [DOI] [PubMed] [Google Scholar]
- Kalderon D., Roberts B. L., Richardson W. D., Smith A. E. A short amino acid sequence able to specify nuclear location. Cell. 1984 Dec;39(3 Pt 2):499–509. doi: 10.1016/0092-8674(84)90457-4. [DOI] [PubMed] [Google Scholar]
- LaFramboise W. A., Daood M. J., Guthrie R. D., Schiaffino S., Moretti P., Brozanski B., Ontell M. P., Butler-Browne G. S., Whalen R. G., Ontell M. Emergence of the mature myosin phenotype in the rat diaphragm muscle. Dev Biol. 1991 Mar;144(1):1–15. doi: 10.1016/0012-1606(91)90473-g. [DOI] [PubMed] [Google Scholar]
- Laird P. W., Zijderveld A., Linders K., Rudnicki M. A., Jaenisch R., Berns A. Simplified mammalian DNA isolation procedure. Nucleic Acids Res. 1991 Aug 11;19(15):4293–4293. doi: 10.1093/nar/19.15.4293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee K. J., Ross R. S., Rockman H. A., Harris A. N., O'Brien T. X., van Bilsen M., Shubeita H. E., Kandolf R., Brem G., Price J. Myosin light chain-2 luciferase transgenic mice reveal distinct regulatory programs for cardiac and skeletal muscle-specific expression of a single contractile protein gene. J Biol Chem. 1992 Aug 5;267(22):15875–15885. [PubMed] [Google Scholar]
- Lewis D. M., Parry D. J., Rowlerson A. Isometric contractions of motor units and immunohistochemistry of mouse soleus muscle. J Physiol. 1982 Apr;325:393–401. doi: 10.1113/jphysiol.1982.sp014157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li Z., Marchand P., Humbert J., Babinet C., Paulin D. Desmin sequence elements regulating skeletal muscle-specific expression in transgenic mice. Development. 1993 Mar;117(3):947–959. doi: 10.1242/dev.117.3.947. [DOI] [PubMed] [Google Scholar]
- Lowey S., Waller G. S., Trybus K. M. Skeletal muscle myosin light chains are essential for physiological speeds of shortening. Nature. 1993 Sep 30;365(6445):454–456. doi: 10.1038/365454a0. [DOI] [PubMed] [Google Scholar]
- Lyons G. E., Ontell M., Cox R., Sassoon D., Buckingham M. The expression of myosin genes in developing skeletal muscle in the mouse embryo. J Cell Biol. 1990 Oct;111(4):1465–1476. doi: 10.1083/jcb.111.4.1465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lyons G. E., Schiaffino S., Sassoon D., Barton P., Buckingham M. Developmental regulation of myosin gene expression in mouse cardiac muscle. J Cell Biol. 1990 Dec;111(6 Pt 1):2427–2436. doi: 10.1083/jcb.111.6.2427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McBurney M. W., Staines W. A., Boekelheide K., Parry D., Jardine K., Pickavance L. Murine PGK-1 promoter drives widespread but not uniform expression in transgenic mice. Dev Dyn. 1994 Aug;200(4):278–293. doi: 10.1002/aja.1002000403. [DOI] [PubMed] [Google Scholar]
- Merrifield P. A., Konigsberg I. R. Nerve-dependent accumulation of myosin light chain 3 in developing limb musculature. Development. 1987 Dec;101(4):673–684. doi: 10.1242/dev.101.4.673. [DOI] [PubMed] [Google Scholar]
- Nabeshima Y., Fujii-Kuriyama Y., Muramatsu M., Ogata K. Alternative transcription and two modes of splicing results in two myosin light chains from one gene. Nature. 1984 Mar 22;308(5957):333–338. doi: 10.1038/308333a0. [DOI] [PubMed] [Google Scholar]
- O'Brien T. X., Lee K. J., Chien K. R. Positional specification of ventricular myosin light chain 2 expression in the primitive murine heart tube. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5157–5161. doi: 10.1073/pnas.90.11.5157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Obinata T., Masaki T., Takano-Ohmuro H., Tanaka T., Shimizu N. Coexistence of cardiac-type and fast skeletal-type myosin light chains in embryonic chicken cardiac muscle. J Biochem. 1983 Sep;94(3):1025–1028. doi: 10.1093/oxfordjournals.jbchem.a134401. [DOI] [PubMed] [Google Scholar]
- Pajak L., Mariappan M., Wieczorek D. F. Reprogramming of myosin light chain 1/3 expression in muscle heterokaryons. Dev Biol. 1991 May;145(1):28–39. doi: 10.1016/0012-1606(91)90210-t. [DOI] [PubMed] [Google Scholar]
- Periasamy M., Strehler E. E., Garfinkel L. I., Gubits R. M., Ruiz-Opazo N., Nadal-Ginard B. Fast skeletal muscle myosin light chains 1 and 3 are produced from a single gene by a combined process of differential RNA transcription and splicing. J Biol Chem. 1984 Nov 10;259(21):13595–13604. [PubMed] [Google Scholar]
- Pette D., Staron R. S. Cellular and molecular diversities of mammalian skeletal muscle fibers. Rev Physiol Biochem Pharmacol. 1990;116:1–76. doi: 10.1007/3540528806_3. [DOI] [PubMed] [Google Scholar]
- Piette J., Huchet M., Houzelstein D., Changeux J. P. Compartmentalized expression of the alpha- and gamma-subunits of the acetylcholine receptor in recently fused myofibers. Dev Biol. 1993 May;157(1):205–213. doi: 10.1006/dbio.1993.1124. [DOI] [PubMed] [Google Scholar]
- Robert B., Daubas P., Akimenko M. A., Cohen A., Garner I., Guenet J. L., Buckingham M. A single locus in the mouse encodes both myosin light chains 1 and 3, a second locus corresponds to a related pseudogene. Cell. 1984 Nov;39(1):129–140. doi: 10.1016/0092-8674(84)90198-3. [DOI] [PubMed] [Google Scholar]
- Rosenthal N., Berglund E. B., Wentworth B. M., Donoghue M., Winter B., Bober E., Braun T., Arnold H. H. A highly conserved enhancer downstream of the human MLC1/3 locus is a target for multiple myogenic determination factors. Nucleic Acids Res. 1990 Nov 11;18(21):6239–6246. doi: 10.1093/nar/18.21.6239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenthal N., Kornhauser J. M., Donoghue M., Rosen K. M., Merlie J. P. Myosin light chain enhancer activates muscle-specific, developmentally regulated gene expression in transgenic mice. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7780–7784. doi: 10.1073/pnas.86.20.7780. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenthal N. Muscle cell differentiation. Curr Opin Cell Biol. 1989 Dec;1(6):1094–1101. doi: 10.1016/s0955-0674(89)80056-0. [DOI] [PubMed] [Google Scholar]
- Sanes J. R., Rubenstein J. L., Nicolas J. F. Use of a recombinant retrovirus to study post-implantation cell lineage in mouse embryos. EMBO J. 1986 Dec 1;5(12):3133–3142. doi: 10.1002/j.1460-2075.1986.tb04620.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sassoon D. A., Garner I., Buckingham M. Transcripts of alpha-cardiac and alpha-skeletal actins are early markers for myogenesis in the mouse embryo. Development. 1988 Sep;104(1):155–164. doi: 10.1242/dev.104.1.155. [DOI] [PubMed] [Google Scholar]
- Sassoon D., Rosenthal N. Detection of messenger RNA by in situ hybridization. Methods Enzymol. 1993;225:384–404. doi: 10.1016/0076-6879(93)25027-y. [DOI] [PubMed] [Google Scholar]
- Schiaffino S., Reggiani C. Myosin isoforms in mammalian skeletal muscle. J Appl Physiol (1985) 1994 Aug;77(2):493–501. doi: 10.1152/jappl.1994.77.2.493. [DOI] [PubMed] [Google Scholar]
- Seidel U., Arnold H. H. Identification of the functional promoter regions in the human gene encoding the myosin alkali light chains MLC1 and MLC3 of fast skeletal muscle. J Biol Chem. 1989 Sep 25;264(27):16109–16117. [PubMed] [Google Scholar]
- Strehler E. E., Periasamy M., Strehler-Page M. A., Nadal-Ginard B. Myosin light-chain 1 and 3 gene has two structurally distinct and differentially regulated promoters evolving at different rates. Mol Cell Biol. 1985 Nov;5(11):3168–3182. doi: 10.1128/mcb.5.11.3168. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tajbakhsh S., Vivarelli E., Cusella-De Angelis G., Rocancourt D., Buckingham M., Cossu G. A population of myogenic cells derived from the mouse neural tube. Neuron. 1994 Oct;13(4):813–821. doi: 10.1016/0896-6273(94)90248-8. [DOI] [PubMed] [Google Scholar]
- Wada M., Pette D. Relationships between alkali light-chain complement and myosin heavy-chain isoforms in single fast-twitch fibers of rat and rabbit. Eur J Biochem. 1993 May 15;214(1):157–161. doi: 10.1111/j.1432-1033.1993.tb17908.x. [DOI] [PubMed] [Google Scholar]
- Weintraub H. The MyoD family and myogenesis: redundancy, networks, and thresholds. Cell. 1993 Dec 31;75(7):1241–1244. doi: 10.1016/0092-8674(93)90610-3. [DOI] [PubMed] [Google Scholar]
- Wentworth B. M., Donoghue M., Engert J. C., Berglund E. B., Rosenthal N. Paired MyoD-binding sites regulate myosin light chain gene expression. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1242–1246. doi: 10.1073/pnas.88.4.1242. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whalen R. G., Sell S. M., Eriksson A., Thornell L. E. Myosin subunit types in skeletal and cardiac tissues and their developmental distribution. Dev Biol. 1982 Jun;91(2):478–484. doi: 10.1016/0012-1606(82)90055-0. [DOI] [PubMed] [Google Scholar]
- Wigston D. J., English A. W. Fiber-type proportions in mammalian soleus muscle during postnatal development. J Neurobiol. 1992 Feb;23(1):61–70. doi: 10.1002/neu.480230107. [DOI] [PubMed] [Google Scholar]
- Yu Y. T., Breitbart R. E., Smoot L. B., Lee Y., Mahdavi V., Nadal-Ginard B. Human myocyte-specific enhancer factor 2 comprises a group of tissue-restricted MADS box transcription factors. Genes Dev. 1992 Sep;6(9):1783–1798. doi: 10.1101/gad.6.9.1783. [DOI] [PubMed] [Google Scholar]
- Zardini D. M., Parry D. J. Identification, distribution, and myosin subunit composition of type IIX fibers in mouse muscles. Muscle Nerve. 1994 Nov;17(11):1308–1316. doi: 10.1002/mus.880171110. [DOI] [PubMed] [Google Scholar]