Abstract
Branching epithelial morphogenesis requires interactions between the surrounding mesenchyme and the epithelium, as well as interactions between basement membrane components and the epithelium. Embryonic submandibular gland was used to study the roles of two mesenchymal proteins, epimorphin and tenascin-C, as well as the epithelial protein laminin-1 and one of its integrin receptors on branching morphogenesis. Laminin-1 is a heterotrimer composed of an alpha 1 chain and two smaller chains (beta 1 and gamma 1). Immunofluorescence revealed a transient expression of laminin alpha 1 chain in the epithelial basement membrane during early stages of branching morphogenesis. Other laminin-1 chains and alpha 6, beta 1, and beta 4 integrin subunits seemed to be expressed constitutively. Expression of epimorphin, but not tenascin-C, was seen in the mesenchyme during early developmental stages, but a mAb against epimorphin did not perturb branching morphogenesis of this early epithelium. In contrast, inhibition of branching morphogenesis was seen with a mAb against the carboxy terminus of laminin alpha 1 chain, the E3 domain. An inhibition of branching was also seen with a mAb against the integrin alpha 6 subunit. The antibodies against laminin alpha 1 chain and integrin alpha 6 subunit perturbed development in distinct fashions. Whereas treatment with the anti-E3 resulted in discontinuities of the basement membrane at the tips of the branching epithelium, treatment with the mAb against alpha 6 integrin subunit seemed to leave the basement membrane intact. We suggest that the laminin E3 domain is involved in basement membrane formation, whereas alpha 6 beta 1 integrin binding to laminin-1 may elicit differentiation signals to the epithelial cells.
Full Text
The Full Text of this article is available as a PDF (5.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beck K., Hunter I., Engel J. Structure and function of laminin: anatomy of a multidomain glycoprotein. FASEB J. 1990 Feb 1;4(2):148–160. doi: 10.1096/fasebj.4.2.2404817. [DOI] [PubMed] [Google Scholar]
- Burgeson R. E., Chiquet M., Deutzmann R., Ekblom P., Engel J., Kleinman H., Martin G. R., Meneguzzi G., Paulsson M., Sanes J. A new nomenclature for the laminins. Matrix Biol. 1994 Apr;14(3):209–211. doi: 10.1016/0945-053x(94)90184-8. [DOI] [PubMed] [Google Scholar]
- Chiquet-Ehrismann R., Mackie E. J., Pearson C. A., Sakakura T. Tenascin: an extracellular matrix protein involved in tissue interactions during fetal development and oncogenesis. Cell. 1986 Oct 10;47(1):131–139. doi: 10.1016/0092-8674(86)90374-0. [DOI] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Cooper A. R., MacQueen H. A. Subunits of laminin are differentially synthesized in mouse eggs and early embryos. Dev Biol. 1983 Apr;96(2):467–471. doi: 10.1016/0012-1606(83)90183-5. [DOI] [PubMed] [Google Scholar]
- Cooper H. M., Tamura R. N., Quaranta V. The major laminin receptor of mouse embryonic stem cells is a novel isoform of the alpha 6 beta 1 integrin. J Cell Biol. 1991 Nov;115(3):843–850. doi: 10.1083/jcb.115.3.843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Durbeej M., Söderström S., Ebendal T., Birchmeier C., Ekblom P. Differential expression of neurotrophin receptors during renal development. Development. 1993 Dec;119(4):977–989. doi: 10.1242/dev.119.4.977. [DOI] [PubMed] [Google Scholar]
- Edgar D., Timpl R., Thoenen H. The heparin-binding domain of laminin is responsible for its effects on neurite outgrowth and neuronal survival. EMBO J. 1984 Jul;3(7):1463–1468. doi: 10.1002/j.1460-2075.1984.tb01997.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ekblom M., Klein G., Mugrauer G., Fecker L., Deutzmann R., Timpl R., Ekblom P. Transient and locally restricted expression of laminin A chain mRNA by developing epithelial cells during kidney organogenesis. Cell. 1990 Jan 26;60(2):337–346. doi: 10.1016/0092-8674(90)90748-4. [DOI] [PubMed] [Google Scholar]
- Ekblom P., Ekblom M., Fecker L., Klein G., Zhang H. Y., Kadoya Y., Chu M. L., Mayer U., Timpl R. Role of mesenchymal nidogen for epithelial morphogenesis in vitro. Development. 1994 Jul;120(7):2003–2014. doi: 10.1242/dev.120.7.2003. [DOI] [PubMed] [Google Scholar]
- Ekblom P., Thesleff I., Miettinen A., Saxén L. Organogenesis in a defined medium supplemented with transferrin. Cell Differ. 1981 Nov;10(5):281–288. doi: 10.1016/0045-6039(81)90010-5. [DOI] [PubMed] [Google Scholar]
- Elices M. J., Urry L. A., Hemler M. E. Receptor functions for the integrin VLA-3: fibronectin, collagen, and laminin binding are differentially influenced by Arg-Gly-Asp peptide and by divalent cations. J Cell Biol. 1991 Jan;112(1):169–181. doi: 10.1083/jcb.112.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Erickson H. P. Tenascin-C, tenascin-R and tenascin-X: a family of talented proteins in search of functions. Curr Opin Cell Biol. 1993 Oct;5(5):869–876. doi: 10.1016/0955-0674(93)90037-q. [DOI] [PubMed] [Google Scholar]
- Ervasti J. M., Campbell K. P. A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J Cell Biol. 1993 Aug;122(4):809–823. doi: 10.1083/jcb.122.4.809. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gullberg D., Terracio L., Borg T. K., Rubin K. Identification of integrin-like matrix receptors with affinity for interstitial collagens. J Biol Chem. 1989 Jul 25;264(21):12686–12694. [PubMed] [Google Scholar]
- Gumbiner B. M. Epithelial morphogenesis. Cell. 1992 May 1;69(3):385–387. doi: 10.1016/0092-8674(92)90440-n. [DOI] [PubMed] [Google Scholar]
- Hall D. E., Reichardt L. F., Crowley E., Holley B., Moezzi H., Sonnenberg A., Damsky C. H. The alpha 1/beta 1 and alpha 6/beta 1 integrin heterodimers mediate cell attachment to distinct sites on laminin. J Cell Biol. 1990 Jun;110(6):2175–2184. doi: 10.1083/jcb.110.6.2175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hierck B. P., Thorsteinsdóttir S., Niessen C. M., Freund E., Iperen L. V., Feyen A., Hogervorst F., Poelmann R. E., Mummery C. L., Sonnenberg A. Variants of the alpha 6 beta 1 laminin receptor in early murine development: distribution, molecular cloning and chromosomal localization of the mouse integrin alpha 6 subunit. Cell Adhes Commun. 1993 May;1(1):33–53. doi: 10.3109/15419069309095680. [DOI] [PubMed] [Google Scholar]
- Hirai Y., Nakagawa S., Takeichi M. Reexamination of the properties of epimorphin and its possible roles. Cell. 1993 May 7;73(3):426–427. doi: 10.1016/0092-8674(93)90129-e. [DOI] [PubMed] [Google Scholar]
- Hirai Y. Sodium-dodecyl-sulfate-resistant complex formation of epimorphin monomers and interaction of the 150-kDa complex with the cell surface. Eur J Biochem. 1994 Nov 1;225(3):1133–1139. doi: 10.1111/j.1432-1033.1994.1133b.x. [DOI] [PubMed] [Google Scholar]
- Hirai Y., Takebe K., Takashina M., Kobayashi S., Takeichi M. Epimorphin: a mesenchymal protein essential for epithelial morphogenesis. Cell. 1992 May 1;69(3):471–481. doi: 10.1016/0092-8674(92)90448-l. [DOI] [PubMed] [Google Scholar]
- Hogervorst F., Admiraal L. G., Niessen C., Kuikman I., Janssen H., Daams H., Sonnenberg A. Biochemical characterization and tissue distribution of the A and B variants of the integrin alpha 6 subunit. J Cell Biol. 1993 Apr;121(1):179–191. doi: 10.1083/jcb.121.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hogervorst F., Kuikman I., van Kessel A. G., Sonnenberg A. Molecular cloning of the human alpha 6 integrin subunit. Alternative splicing of alpha 6 mRNA and chromosomal localization of the alpha 6 and beta 4 genes. Eur J Biochem. 1991 Jul 15;199(2):425–433. doi: 10.1111/j.1432-1033.1991.tb16140.x. [DOI] [PubMed] [Google Scholar]
- Kadoya Y., Yamashina S. Distribution of alpha 6 integrin subunit in developing mouse submandibular gland. J Histochem Cytochem. 1993 Nov;41(11):1707–1714. doi: 10.1177/41.11.8409377. [DOI] [PubMed] [Google Scholar]
- Kadoya Y., Yamashina S. Intracellular accumulation of basement membrane components during morphogenesis of rat submandibular gland. J Histochem Cytochem. 1989 Sep;37(9):1387–1392. doi: 10.1177/37.9.2768808. [DOI] [PubMed] [Google Scholar]
- Kadoya Y., Yamashina S. Reconstruction of the basement membrane in a cultured submandibular gland. Anat Embryol (Berl) 1991;183(5):491–499. doi: 10.1007/BF00186438. [DOI] [PubMed] [Google Scholar]
- Klein G., Ekblom M., Fecker L., Timpl R., Ekblom P. Differential expression of laminin A and B chains during development of embryonic mouse organs. Development. 1990 Nov;110(3):823–837. doi: 10.1242/dev.110.3.823. [DOI] [PubMed] [Google Scholar]
- Klein G., Langegger M., Timpl R., Ekblom P. Role of laminin A chain in the development of epithelial cell polarity. Cell. 1988 Oct 21;55(2):331–341. doi: 10.1016/0092-8674(88)90056-6. [DOI] [PubMed] [Google Scholar]
- Kramer R. H., Vu M. P., Cheng Y. F., Ramos D. M., Timpl R., Waleh N. Laminin-binding integrin alpha 7 beta 1: functional characterization and expression in normal and malignant melanocytes. Cell Regul. 1991 Oct;2(10):805–817. doi: 10.1091/mbc.2.10.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kücherer-Ehret A., Pottgiesser J., Kreutzberg G. W., Thoenen H., Edgar D. Developmental loss of laminin from the interstitial extracellular matrix correlates with decreased laminin gene expression. Development. 1990 Dec;110(4):1285–1293. doi: 10.1242/dev.110.4.1285. [DOI] [PubMed] [Google Scholar]
- Lenter M., Uhlig H., Hamann A., Jenö P., Imhof B., Vestweber D. A monoclonal antibody against an activation epitope on mouse integrin chain beta 1 blocks adhesion of lymphocytes to the endothelial integrin alpha 6 beta 1. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):9051–9055. doi: 10.1073/pnas.90.19.9051. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matter M. L., Laurie G. W. A novel laminin E8 cell adhesion site required for lung alveolar formation in vitro. J Cell Biol. 1994 Mar;124(6):1083–1090. doi: 10.1083/jcb.124.6.1083. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mayer U., Nischt R., Pöschl E., Mann K., Fukuda K., Gerl M., Yamada Y., Timpl R. A single EGF-like motif of laminin is responsible for high affinity nidogen binding. EMBO J. 1993 May;12(5):1879–1885. doi: 10.1002/j.1460-2075.1993.tb05836.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nogawa H., Takahashi Y. Substitution for mesenchyme by basement-membrane-like substratum and epidermal growth factor in inducing branching morphogenesis of mouse salivary epithelium. Development. 1991 Jul;112(3):855–861. doi: 10.1242/dev.112.3.855. [DOI] [PubMed] [Google Scholar]
- Nurcombe V., Aumailley M., Timpl R., Edgar D. The high-affinity binding of laminin to cells. Assignation of a major cell-binding site to the long arm of laminin and of a latent cell-binding site to its short arms. Eur J Biochem. 1989 Mar 1;180(1):9–14. doi: 10.1111/j.1432-1033.1989.tb14608.x. [DOI] [PubMed] [Google Scholar]
- Ott U., Odermatt E., Engel J., Furthmayr H., Timpl R. Protease resistance and conformation of laminin. Eur J Biochem. 1982 Mar;123(1):63–72. doi: 10.1111/j.1432-1033.1982.tb06499.x. [DOI] [PubMed] [Google Scholar]
- Paulsson M., Deutzmann R., Dziadek M., Nowack H., Timpl R., Weber S., Engel J. Purification and structural characterization of intact and fragmented nidogen obtained from a tumor basement membrane. Eur J Biochem. 1986 May 2;156(3):467–478. doi: 10.1111/j.1432-1033.1986.tb09605.x. [DOI] [PubMed] [Google Scholar]
- Pelham H. R. Is epimorphin involved in vesicular transport? Cell. 1993 May 7;73(3):425–426. doi: 10.1016/0092-8674(93)90128-d. [DOI] [PubMed] [Google Scholar]
- Richter A., Sanford K. K., Evans V. J. Influence of oxygen and culture media on plating efficiency of some mammalian tissue cells. J Natl Cancer Inst. 1972 Dec;49(6):1705–1712. doi: 10.1093/jnci/49.6.1705. [DOI] [PubMed] [Google Scholar]
- Sasaki M., Kleinman H. K., Huber H., Deutzmann R., Yamada Y. Laminin, a multidomain protein. The A chain has a unique globular domain and homology with the basement membrane proteoglycan and the laminin B chains. J Biol Chem. 1988 Nov 15;263(32):16536–16544. [PubMed] [Google Scholar]
- Schuger L., Skubitz A. P., O'Shea K. S., Chang J. F., Varani J. Identification of laminin domains involved in branching morphogenesis: effects of anti-laminin monoclonal antibodies on mouse embryonic lung development. Dev Biol. 1991 Aug;146(2):531–541. doi: 10.1016/0012-1606(91)90254-z. [DOI] [PubMed] [Google Scholar]
- Shaw L. M., Mercurio A. M. Regulation of cellular interactions with laminin by integrin cytoplasmic domains: the A and B structural variants of the alpha 6 beta 1 integrin differentially modulate the adhesive strength, morphology, and migration of macrophages. Mol Biol Cell. 1994 Jun;5(6):679–690. doi: 10.1091/mbc.5.6.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sonnenberg A., Linders C. J., Modderman P. W., Damsky C. H., Aumailley M., Timpl R. Integrin recognition of different cell-binding fragments of laminin (P1, E3, E8) and evidence that alpha 6 beta 1 but not alpha 6 beta 4 functions as a major receptor for fragment E8. J Cell Biol. 1990 Jun;110(6):2145–2155. doi: 10.1083/jcb.110.6.2145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sorokin L. M., Conzelmann S., Ekblom P., Battaglia C., Aumailley M., Timpl R. Monoclonal antibodies against laminin A chain fragment E3 and their effects on binding to cells and proteoglycan and on kidney development. Exp Cell Res. 1992 Jul;201(1):137–144. doi: 10.1016/0014-4827(92)90357-e. [DOI] [PubMed] [Google Scholar]
- Sorokin L., Sonnenberg A., Aumailley M., Timpl R., Ekblom P. Recognition of the laminin E8 cell-binding site by an integrin possessing the alpha 6 subunit is essential for epithelial polarization in developing kidney tubules. J Cell Biol. 1990 Sep;111(3):1265–1273. doi: 10.1083/jcb.111.3.1265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spooner B. S., Faubion J. M. Collagen involvement in branching morphogenesis of embryonic lung and salivary gland. Dev Biol. 1980 Jun 1;77(1):84–102. doi: 10.1016/0012-1606(80)90458-3. [DOI] [PubMed] [Google Scholar]
- Spooner B. S., Wessells N. K. An analysis of salivary gland morphogenesis: role of cytoplasmic microfilaments and microtubules. Dev Biol. 1972 Jan;27(1):38–54. doi: 10.1016/0012-1606(72)90111-x. [DOI] [PubMed] [Google Scholar]
- Sung U., O'Rear J. J., Yurchenco P. D. Cell and heparin binding in the distal long arm of laminin: identification of active and cryptic sites with recombinant and hybrid glycoprotein. J Cell Biol. 1993 Dec;123(5):1255–1268. doi: 10.1083/jcb.123.5.1255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahashi Y., Nogawa H. Branching morphogenesis of mouse salivary epithelium in basement membrane-like substratum separated from mesenchyme by the membrane filter. Development. 1991 Feb;111(2):327–335. doi: 10.1242/dev.111.2.327. [DOI] [PubMed] [Google Scholar]
- Tamura R. N., Cooper H. M., Collo G., Quaranta V. Cell type-specific integrin variants with alternative alpha chain cytoplasmic domains. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10183–10187. doi: 10.1073/pnas.88.22.10183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas T., Dziadek M. Expression of collagen alpha 1(IV), laminin and nidogen genes in the embryonic mouse lung: implications for branching morphogenesis. Mech Dev. 1994 Mar;45(3):193–201. doi: 10.1016/0925-4773(94)90007-8. [DOI] [PubMed] [Google Scholar]
- Timpl R., Brown J. C. The laminins. Matrix Biol. 1994 Aug;14(4):275–281. doi: 10.1016/0945-053x(94)90192-9. [DOI] [PubMed] [Google Scholar]
- Timpl R. Structure and biological activity of basement membrane proteins. Eur J Biochem. 1989 Apr 1;180(3):487–502. doi: 10.1111/j.1432-1033.1989.tb14673.x. [DOI] [PubMed] [Google Scholar]
- Tryggvason K. The laminin family. Curr Opin Cell Biol. 1993 Oct;5(5):877–882. doi: 10.1016/0955-0674(93)90038-r. [DOI] [PubMed] [Google Scholar]
- Vestweber D., Kemler R. Identification of a putative cell adhesion domain of uvomorulin. EMBO J. 1985 Dec 16;4(13A):3393–3398. doi: 10.1002/j.1460-2075.1985.tb04095.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yurchenco P. D., Cheng Y. S., Schittny J. C. Heparin modulation of laminin polymerization. J Biol Chem. 1990 Mar 5;265(7):3981–3991. [PubMed] [Google Scholar]
- Yurchenco P. D., Sung U., Ward M. D., Yamada Y., O'Rear J. J. Recombinant laminin G domain mediates myoblast adhesion and heparin binding. J Biol Chem. 1993 Apr 15;268(11):8356–8365. [PubMed] [Google Scholar]
- Ziober B. L., Vu M. P., Waleh N., Crawford J., Lin C. S., Kramer R. H. Alternative extracellular and cytoplasmic domains of the integrin alpha 7 subunit are differentially expressed during development. J Biol Chem. 1993 Dec 15;268(35):26773–26783. [PubMed] [Google Scholar]
- von der Mark H., Dürr J., Sonnenberg A., von der Mark K., Deutzmann R., Goodman S. L. Skeletal myoblasts utilize a novel beta 1-series integrin and not alpha 6 beta 1 for binding to the E8 and T8 fragments of laminin. J Biol Chem. 1991 Dec 15;266(35):23593–23601. [PubMed] [Google Scholar]