Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1995 Apr 2;129(2):535–547. doi: 10.1083/jcb.129.2.535

Molecular cloning of chick beta-tectorin, an extracellular matrix molecule of the inner ear

PMCID: PMC2199922  PMID: 7721949

Abstract

The tectorial membrane is an extracellular matrix lying over the apical surface of the auditory epithelium. Immunofluorescence studies have suggested that some proteins of the avian tectorial membrane, the tectorins, may be unique to the inner ear (Killick, R., C. Malenczak, and G. P. Richardson. 1992. Hearing Res. 64:21-38). The cDNA and deduced amino acid sequences for chick beta-tectorin are presented. The cDNA encodes a protein of 36,902.6 D with a putative signal sequence, four potential N-glycosylation sites, 13 cysteines, and a hydrophobic COOH terminus. Western blots of two-dimensional gels using antibodies to a synthetic peptide confirm the identity of the cDNA. Southern and Northern analysis suggests that beta-tectorin is a single-copy gene only expressed in the inner ear. The predicted COOH terminus is similar to that of glycosylphosphatidylinositol-linked proteins, and antisera raised to this region react with in vitro translation products of the cDNA clone but not with mature beta-tectorin. These data suggest beta- tectorin is synthesized as a glycosylphosphatidyl-inositol-linked precursor, targeted to the apical surface of the sensory epithelium by the lipid moiety, and then further processed. Sequence analysis indicates the predicted protein possesses a zona pellucida domain, a sequence that is common to a limited number of other matrix-forming proteins and may be involved in the formation of filaments. In the cochlear duct, beta-tectorin is expressed in the basilar papilla, in the clear cells and the cuboidal cells, as well as in the striolar region of the lagena macula. The expression of beta-tectorin is associated with hair cells that have an apical cell surface specialization known as the 275-kD hair cell antigen restricted to the basal region of the hair bundle, suggesting that matrices containing beta-tectorin are required to drive this hair cell type.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen J. B. Cochlear micromechanics--a physical model of transduction. J Acoust Soc Am. 1980 Dec;68(6):1660–1670. doi: 10.1121/1.385198. [DOI] [PubMed] [Google Scholar]
  2. BAYER M. E. AN ELECTRON MICROSCOPE EXAMINATION OF URINARY MUCOPROTEIN AND ITS INTERACTION WITH INFLUENZA VIRUS. J Cell Biol. 1964 May;21:265–274. doi: 10.1083/jcb.21.2.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blin N., Stafford D. W. A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res. 1976 Sep;3(9):2303–2308. doi: 10.1093/nar/3.9.2303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bork P., Sander C. A large domain common to sperm receptors (Zp2 and Zp3) and TGF-beta type III receptor. FEBS Lett. 1992 Apr 6;300(3):237–240. doi: 10.1016/0014-5793(92)80853-9. [DOI] [PubMed] [Google Scholar]
  5. Brownell W. E., Bader C. R., Bertrand D., de Ribaupierre Y. Evoked mechanical responses of isolated cochlear outer hair cells. Science. 1985 Jan 11;227(4683):194–196. doi: 10.1126/science.3966153. [DOI] [PubMed] [Google Scholar]
  6. Chamberlin M. E., Dean J. Human homolog of the mouse sperm receptor. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6014–6018. doi: 10.1073/pnas.87.16.6014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  8. Cohen G. M., Fermin C. D. Development of the embryonic chick's tectorial membrane. Hear Res. 1985 Apr;18(1):29–39. doi: 10.1016/0378-5955(85)90108-x. [DOI] [PubMed] [Google Scholar]
  9. Cotanche D. A. Regeneration of the tectorial membrane in the chick cochlea following severe acoustic trauma. Hear Res. 1987;30(2-3):197–206. doi: 10.1016/0378-5955(87)90136-5. [DOI] [PubMed] [Google Scholar]
  10. Cross G. A. Eukaryotic protein modification and membrane attachment via phosphatidylinositol. Cell. 1987 Jan 30;48(2):179–181. doi: 10.1016/0092-8674(87)90419-3. [DOI] [PubMed] [Google Scholar]
  11. Cross G. A. Glycolipid anchoring of plasma membrane proteins. Annu Rev Cell Biol. 1990;6:1–39. doi: 10.1146/annurev.cb.06.110190.000245. [DOI] [PubMed] [Google Scholar]
  12. David G., Lories V., Decock B., Marynen P., Cassiman J. J., Van den Berghe H. Molecular cloning of a phosphatidylinositol-anchored membrane heparan sulfate proteoglycan from human lung fibroblasts. J Cell Biol. 1990 Dec;111(6 Pt 2):3165–3176. doi: 10.1083/jcb.111.6.3165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  14. Ferguson M. A., Williams A. F. Cell-surface anchoring of proteins via glycosyl-phosphatidylinositol structures. Annu Rev Biochem. 1988;57:285–320. doi: 10.1146/annurev.bi.57.070188.001441. [DOI] [PubMed] [Google Scholar]
  15. Fletcher A. P., McLaughlin J. E., Ratcliffe W. A., Woods D. A. The chemical composition and electron microscopic appearance of a protein derived from urinary casts. Biochim Biophys Acta. 1970 Aug 21;214(2):299–308. doi: 10.1016/0005-2795(70)90007-3. [DOI] [PubMed] [Google Scholar]
  16. Fukuoka S., Freedman S. D., Scheele G. A. A single gene encodes membrane-bound and free forms of GP-2, the major glycoprotein in pancreatic secretory (zymogen) granule membranes. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2898–2902. doi: 10.1073/pnas.88.7.2898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fukushima D., Bützow R., Hildebrand A., Ruoslahti E. Localization of transforming growth factor beta binding site in betaglycan. Comparison with small extracellular matrix proteoglycans. J Biol Chem. 1993 Oct 25;268(30):22710–22715. [PubMed] [Google Scholar]
  18. Goodyear R., Richardson G. Distribution of the 275 kD hair cell antigen and cell surface specialisations on auditory and vestibular hair bundles in the chicken inner ear. J Comp Neurol. 1992 Nov 8;325(2):243–256. doi: 10.1002/cne.903250208. [DOI] [PubMed] [Google Scholar]
  19. Greve J. M., Wassarman P. M. Mouse egg extracellular coat is a matrix of interconnected filaments possessing a structural repeat. J Mol Biol. 1985 Jan 20;181(2):253–264. doi: 10.1016/0022-2836(85)90089-0. [DOI] [PubMed] [Google Scholar]
  20. Grondin G., St-Jean P., Beaudoin A. R. Cytochemical and immunocytochemical characterization of a fibrillar network (GP2) in pancreatic juice: possible role as a sieve in the pancreatic ductal system. Eur J Cell Biol. 1992 Apr;57(2):155–164. [PubMed] [Google Scholar]
  21. Hasko J. A., Richardson G. P. The ultrastructural organization and properties of the mouse tectorial membrane matrix. Hear Res. 1988 Sep 1;35(1):21–38. doi: 10.1016/0378-5955(88)90037-8. [DOI] [PubMed] [Google Scholar]
  22. Hession C., Decker J. M., Sherblom A. P., Kumar S., Yue C. C., Mattaliano R. J., Tizard R., Kawashima E., Schmeissner U., Heletky S. Uromodulin (Tamm-Horsfall glycoprotein): a renal ligand for lymphokines. Science. 1987 Sep 18;237(4821):1479–1484. doi: 10.1126/science.3498215. [DOI] [PubMed] [Google Scholar]
  23. Hoyer J. R., Seiler M. W. Pathophysiology of Tamm-Horsfall protein. Kidney Int. 1979 Sep;16(3):279–289. doi: 10.1038/ki.1979.130. [DOI] [PubMed] [Google Scholar]
  24. Kachar B., Brownell W. E., Altschuler R., Fex J. Electrokinetic shape changes of cochlear outer hair cells. Nature. 1986 Jul 24;322(6077):365–368. doi: 10.1038/322365a0. [DOI] [PubMed] [Google Scholar]
  25. Killick R., Malenczak C., Richardson G. P. The protein composition of the avian tectorial membrane. Hear Res. 1992 Dec;64(1):21–38. doi: 10.1016/0378-5955(92)90165-j. [DOI] [PubMed] [Google Scholar]
  26. Kodukula K., Gerber L. D., Amthauer R., Brink L., Udenfriend S. Biosynthesis of glycosylphosphatidylinositol (GPI)-anchored membrane proteins in intact cells: specific amino acid requirements adjacent to the site of cleavage and GPI attachment. J Cell Biol. 1993 Feb;120(3):657–664. doi: 10.1083/jcb.120.3.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kozak M. The scanning model for translation: an update. J Cell Biol. 1989 Feb;108(2):229–241. doi: 10.1083/jcb.108.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. LeBel D., Beattie M. The major protein of pancreatic zymogen granule membranes (GP-2) is anchored via covalent bonds to phosphatidylinositol. Biochem Biophys Res Commun. 1988 Jul 29;154(2):818–823. doi: 10.1016/0006-291x(88)90213-6. [DOI] [PubMed] [Google Scholar]
  29. Liang L. F., Chamow S. M., Dean J. Oocyte-specific expression of mouse Zp-2: developmental regulation of the zona pellucida genes. Mol Cell Biol. 1990 Apr;10(4):1507–1515. doi: 10.1128/mcb.10.4.1507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lindeman H. H. Studies on the morphology of the sensory regions of the vestibular apparatus with 45 figures. Ergeb Anat Entwicklungsgesch. 1969;42(1):1–113. [PubMed] [Google Scholar]
  31. Lisanti M. P., Sargiacomo M., Graeve L., Saltiel A. R., Rodriguez-Boulan E. Polarized apical distribution of glycosyl-phosphatidylinositol-anchored proteins in a renal epithelial cell line. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9557–9561. doi: 10.1073/pnas.85.24.9557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. López-Casillas F., Payne H. M., Andres J. L., Massagué J. Betaglycan can act as a dual modulator of TGF-beta access to signaling receptors: mapping of ligand binding and GAG attachment sites. J Cell Biol. 1994 Feb;124(4):557–568. doi: 10.1083/jcb.124.4.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. MacDonald R. J., Ronzio R. A. Comparative analysis of zymogen granule membrane polypeptides. Biochem Biophys Res Commun. 1972 Oct 17;49(2):377–382. doi: 10.1016/0006-291x(72)90421-4. [DOI] [PubMed] [Google Scholar]
  34. McQueen E. G. Composition of urinary casts. Lancet. 1966 Feb 19;1(7434):397–398. doi: 10.1016/s0140-6736(66)91392-4. [DOI] [PubMed] [Google Scholar]
  35. Mierendorf R. C., Percy C., Young R. A. Gene isolation by screening lambda gt11 libraries with antibodies. Methods Enzymol. 1987;152:458–469. doi: 10.1016/0076-6879(87)52054-7. [DOI] [PubMed] [Google Scholar]
  36. Muchmore A. V., Decker J. M. Uromodulin: a unique 85-kilodalton immunosuppressive glycoprotein isolated from urine of pregnant women. Science. 1985 Aug 2;229(4712):479–481. doi: 10.1126/science.2409603. [DOI] [PubMed] [Google Scholar]
  37. Neely S. T., Kim D. O. A model for active elements in cochlear biomechanics. J Acoust Soc Am. 1986 May;79(5):1472–1480. doi: 10.1121/1.393674. [DOI] [PubMed] [Google Scholar]
  38. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  39. Okayama H., Kawaichi M., Brownstein M., Lee F., Yokota T., Arai K. High-efficiency cloning of full-length cDNA; construction and screening of cDNA expression libraries for mammalian cells. Methods Enzymol. 1987;154:3–28. doi: 10.1016/0076-6879(87)54067-8. [DOI] [PubMed] [Google Scholar]
  40. PORTER K. R., TAMM I. Direct visualization of a mucoprotein component of urine. J Biol Chem. 1955 Jan;212(1):135–140. [PubMed] [Google Scholar]
  41. Pennica D., Kohr W. J., Kuang W. J., Glaister D., Aggarwal B. B., Chen E. Y., Goeddel D. V. Identification of human uromodulin as the Tamm-Horsfall urinary glycoprotein. Science. 1987 Apr 3;236(4797):83–88. doi: 10.1126/science.3453112. [DOI] [PubMed] [Google Scholar]
  42. Richardson G. P., Bartolami S., Russell I. J. Identification of a 275-kD protein associated with the apical surfaces of sensory hair cells in the avian inner ear. J Cell Biol. 1990 Apr;110(4):1055–1066. doi: 10.1083/jcb.110.4.1055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Richardson G. P., Russell I. J., Duance V. C., Bailey A. J. Polypeptide composition of the mammalian tectorial membrane. Hear Res. 1987;25(1):45–60. doi: 10.1016/0378-5955(87)90078-5. [DOI] [PubMed] [Google Scholar]
  44. Rindler M. J., Naik S. S., Li N., Hoops T. C., Peraldi M. N. Uromodulin (Tamm-Horsfall glycoprotein/uromucoid) is a phosphatidylinositol-linked membrane protein. J Biol Chem. 1990 Dec 5;265(34):20784–20789. [PubMed] [Google Scholar]
  45. Ross M. D., Komorowski T. E., Donovan K. M., Pote K. G. The suprastructure of the saccular macula. Acta Otolaryngol. 1987 Jan-Feb;103(1-2):56–63. doi: 10.3109/00016488709134698. [DOI] [PubMed] [Google Scholar]
  46. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Shiel M. J., Cotanche D. A. SEM analysis of the developing tectorial membrane in the chick cochlea. Hear Res. 1990 Aug 1;47(1-2):147–157. doi: 10.1016/0378-5955(90)90172-l. [DOI] [PubMed] [Google Scholar]
  48. Slepecky N. B., Savage J. E., Cefaratti L. K., Yoo T. J. Electron-microscopic localization of type II, IX, and V collagen in the organ of Corti of the gerbil. Cell Tissue Res. 1992 Mar;267(3):413–418. doi: 10.1007/BF00319363. [DOI] [PubMed] [Google Scholar]
  49. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  50. Stevenson F. K., Cleave A. J., Kent P. W. The effect of ions on the viscometric and ultracentrifugal behaviour of Tamm-Horsfall glycoprotein. Biochim Biophys Acta. 1971 Apr 27;236(1):59–66. doi: 10.1016/0005-2795(71)90149-8. [DOI] [PubMed] [Google Scholar]
  51. TAMM I., HORSFALL F. L., Jr A mucoprotein derived from human urine which reacts with influenza, mumps, and Newcastle disease viruses. J Exp Med. 1952 Jan;95(1):71–97. doi: 10.1084/jem.95.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Tanaka K., Smith C. A. Structure of the avian tectorial membrane. Ann Otol Rhinol Laryngol. 1975 May-Jun;84(3 Pt 1):287–296. doi: 10.1177/000348947508400302. [DOI] [PubMed] [Google Scholar]
  53. Thalmann I., Thallinger G., Crouch E. C., Comegys T. H., Barrett N., Thalmann R. Composition and supramolecular organization of the tectorial membrane. Laryngoscope. 1987 Mar;97(3 Pt 1):357–367. [PubMed] [Google Scholar]
  54. WERSALL J. Studies on the structure and innervation of the sensory epithelium of the cristae ampulares in the guinea pig; a light and electron microscopic investigation. Acta Otolaryngol Suppl. 1956;126:1–85. [PubMed] [Google Scholar]
  55. Wassarman P. M. Zona pellucida glycoproteins. Annu Rev Biochem. 1988;57:415–442. doi: 10.1146/annurev.bi.57.070188.002215. [DOI] [PubMed] [Google Scholar]
  56. Zwislocki J. J. Tectorial membrane: a possible sharpening effect on the frequency analysis in the cochlea. Acta Otolaryngol. 1979 Mar-Apr;87(3-4):267–269. doi: 10.3109/00016487909126419. [DOI] [PubMed] [Google Scholar]
  57. von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES